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요 약
본 논문은 저궤도 위성 통신 환경에서 지상 트래픽 수요의 지리적 불균형성과 시변적인 특성을 반영한 무선 자원 할당 기법을 제안한다. 특히, 빔
호핑(Beam hopping, BH) 기법을 활용하여 큐 지연(queue delay)을 고려한 빔 할당 및 대역폭 분배 방식을 설계하고, 이를 심층 강화학습(Deep
reinforcement learning, DRL) 기반으로 최적화한다. 또한, 트래픽 예측값을 활용함으로써 보다 빠르고 안정적인 학습 수렴을 달성하였다.

Ⅰ. 서 론

최근 위성 통신 시스템은 넓은 커버리지와 높은 전송 용량을 기반으로,

지상 통신을 보완할 수 있는 차세대 인프라로 주목받고 있다 [1]. 그러나

지상 트래픽 수요는 지리적으로 불균형하고 시간에 따라 변동성이 크기

때문에, 제한된 위성 자원을 효율적으로 활용하는 방안이 중요한 과제로

대두되고 있다 [2]. 이에 따라, 다중 빔 위성 (Multi-beam satellite, MBS)

에서는 위상 배열 안테나의 발전을 바탕으로 빔 호핑 (Beam hopping,

BH) 기술이 도입되어 시간 및 공간 자원의 활용 효율을 높이고 있다 [3].

BH 시스템에서는 매 타임 슬롯마다 활성화할 빔 조합, 즉 BH 패턴의 설

계가시스템성능에큰영향을미친다. 하지만기존의휴리스틱방식은시

변적이고 불규칙한 트래픽에 유연하게 대응하기 어려우며, 패턴 탐색의

복잡도 또한 높다는 한계가 있다 [4]. 이에 본 논문에서는 사용자 지연 요

구를 반영하기 위해 큐 지연(queue delay)을 고려하고, 이를 기반으로 심

층 강화학습 (Deep reinforcement learning, DRL)을 활용한 최적 BH 기

법을 제안한다.

Ⅱ. 시스템 모델 및 제안방안

본 논문에서는 저궤도 위성이 그림 1과 같이 M개의 빔을 이용하여 K
개의지상셀에통신서비스를제공하는시나리오를고려한다. 각 빔은동

일한 대역폭을 사용하며, 전체 대역폭은 N개의 주파수 채널로 분할되어
셀별로 할당된다. 지상 트래픽수요는 Telecom Italia Big Data Challenge

2014에서 수집된데이터를기반으로 구성된다 [5]. 위성은 각 셀별로 처리

되지 않은 데이터를 저장할 수 있는 개별 큐(queue)를 보유하고 있다. 제

안하는 프레임워크는 LSTM (Long short-term memory)을 활용하여 예

측된 트래픽 수요를 기반으로, 각 타임스텝마다 적절한 빔 전환을 수행함

으로써 최적의 통신 서비스를 제공한다.

이러한 문제를 해결하기 위해, 본 논문에서는 위성 빔에 두 개의 DRL

에이전트를 적용하였다. 제안하는 두 에이전트의 MDP (Markov decision

process)는 다음과 같다. 타임스텝 t에서 두 에이전트의 상태정보는 글로
벌상태정보로동일하게정의되며, 각 큐에저장된 트래픽양과향후 L 타
임스텝까지의 트래픽 예측값으로 구성된다. 각 에이전트의 행동은 다음과

같다: 첫 번째에이전트는 다음 타임스텝 t 에서서비스할 셀을선택하
고, 두 번째 에이전트는 해당 빔의 대역폭 분할 방안을 결정한다. 두 에이

전트 간의 협력적 학습을 위해 설계된 통합 보상 함수는 식 (1)과 같다.

그림 1. System Model
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여기서 xtk Btk Bch tk는 각각 타임스텝 t에서 k번째 빔이 활성화되었
는지를 나타내는 변수, 해당 빔이 사용하는 채널의 개수, 채널 대역폭 및

SINR (Signal to interference plus noise ratio)을 의미한다. k 
K Dtk는 큐에

저장되어있는트래픽의 양을 의미하며, k 
K Stk는 타임스텝 t에서빔 전환

횟수를의미한다. s F는 보상의크기를 조정하는 변수이며   는
보상 별 가중치이다. tk는 타임슬롯 t에서 k셀의 평균 큐 지연을 의미하
며 식 (2)와 같이 계산된다.
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여기서 t uk 은큐 k에서 u 타임스텝만큼기다린 데이터패킷 수를의미
한다.



Ⅲ. 시뮬레이션 결과

A. 시뮬레이션 환경

시뮬레이션의 전체적인 파라미터는 표 1과 같다.

Parameter Value Parameter Value

#� of� Cells� ()  Noise� power�

spectral�

density

dbmHz
#� of� Beams� ()  Total�

bandwidth
 MHz

#�of�Channels� ()  #� of� episodes 
Satellite� altitude  km #� of�

iterations


Carrier� frequency  GHz Learning� rate  
Total� transmit�

power

Watt Discount�

factor


표 1. Simulation Parameters

B. 시뮬레이션 결과

본 논문에서는 제안방안의 성능을 검증하기 위해 벤치마크 알고리즘들

과 비교 실험을 수행하였다. 벤치마크 알고리즘은 다음과 같다.

Ÿ Random Action: 각 에이전트가 모든 에피소드에서 무작위로 행동을

선택하는 방식

Ÿ DQN-Max-Delay-based Beam Hopping (DQN-MD-BH): 평균 큐

지연이 가장 큰 셀을 우선적으로 선택하여 서비스하는 방식

Ÿ DQN-Max-Traffic-based Beam Hopping (DQN-MT-BH): 트래픽

수요가 가장 높은 셀을 우선적으로 선택하여 서비스하는 방식

Ÿ DQN-Full-Bandwidth per Beam (DQN-FBB): 각 빔이 전체 채널을

모두 사용하여 서비스를 제공하는 방안

Ÿ DQN-Single-Channel per Beam (DQN-SCB): 각 빔이 하나의 채널

만을 사용하여 서비스를 제공하는 방식

Ÿ Proposed w/o Traffic Prediction (Proposed w/o TP): 제안방안에서

트래픽 예측값 없이 학습을 수행하는 방식

그림 2는 트래픽 예측값을 활용하는 방안과 활용하지 않는 방안 간의 성

능을 비교한 시뮬레이션 결과를 나타낸다. 시뮬레이션 결과를 통해, 트래

픽 예측값을 활용한 제안방안이보다 빠른 수렴 속도를보임을 확인할수

있으며, 이는 학습 단계에서 불필요한 탐색을 줄이고 효율적인 정책 학습

을 유도함을 보여준다.

그림 3은 제안방안과 다양한벤치마크알고리즘간의 성능비교를나타낸

다. DQN-MD-BH 및 DQN-MT-BH는 각각 대기열 지연이 가장크거나

트래픽수요가가장높은셀을우선적으로선택하지만, 빔 전환에따른오

버헤드를고려하지 않기때문에제안방안에비해 낮은보상으로수렴하는

경향을 보인다. DQN-SCB는 각 빔에 하나의 채널만 할당하는 구조로 인

해 처리량이 매우 낮아, 전체 알고리즘 중 가장 낮은 보상으로 수렴하였

다. 한편, DQN-FBB는 모든 빔에 전체 대역폭을 할당하여 비교적 높은

보상을 달성하였으며, 이는 지상 트래픽 수요가 높은 환경에서는 전체 대

역폭을 사용하는 방식이 유리할 수 있음을 시사한다. 하지만 트래픽 수요

를 고려하지 않고 모든 빔에서 전체 대역폭을 동시에 사용하므로, 수요가

낮은 셀에서는 자원이 낭비되어 전체 자원 활용 효율이 저하된다.

Ⅳ. 결론

본 논문에서는 지상 트래픽의 지리적 불균형성과 시변적 특성 그리고

큐 지연을 고려한 DRL 기반의 최적 빔 호핑 기법을 제안하였다.

그림 2 Reward vs. episode (       )

그림 3 Reward vs. episode (       )
제안방안은 LSTM을 활용한 트래픽 예측을 통해 학습의 수렴 속도와 안

정성을 향상시켰으며, 빔 할당과 대역폭 분할을 담당하는 두 개의 에이전

트구조를통해자원의운용효율또한향상시켰다. 시뮬레이션결과를통

해제안방안이 벤치마크 알고리즘에 비해 셀 간지연을 완화하고 전체 네

트워크 성능을 효과적으로 향상시킴을 확인하였다.
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