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요 약

본 논문에서는 CIR(channel impulse response)를 활용해 트랜스포머 self-attention 구조를 기반으로 하는 FP (fingerprinting) 실내 측위
기법을 제안한다. Self-attention 기법은 시퀀스 내의 각 위치가 다른 모든 위치의 정보를 참고하여 가중합을 계산하는 방식으로, 입력 간의
상관관계를효과적으로반영할 수있다. 따라서 본연구에서는 CIR의 샘플링 인덱스 별 magnitude를 입력 데이터로 하여 self-attention 기반의
FP 모델을 학습하였으며, 모델 성능 평가를 위해 DNN (deep neural network) 모델의 시뮬레이션을 같이 진행해 테스트를 수행하였다. 실험
결과, self-attention 구조를 사용한 경우에는 CDF 50% 및 CDF 80% 기준으로 각각 0.90 m, 1.51 m의 거리 오차를 보였으나, DNN 구조를
사용한 경우에서는 각각 2.63 m, 4.13m의 오차를 보이는 것을 확인하였다. 이는 self-attention 기반의 구조가 실내 환경의 복잡한 시공간적
상관 관계를 정교하게 반영할 수 있음을 의미한다.

Ⅰ. 서 론

실내 위치 측위 연구는 스마트 환경 구축, 긴급 대응 시스템과 같은
다양한 응용 분야에서 중요한 역할을 한다 [1]. 그러나, 복잡한 실내
환경에서는 NLoS(non-line of sight)의 영향으로 인해 높은 정확도의
위치 추정이 불가능하다. 이러한 높은 복잡도 문제를 해결하기 위해 CIR
(channel impulse response) 신호를 활용한 딥러닝 기반 FP
(fingerprinting) 연구가 활발히 진행되고 있다 [2]. 그 중에서도
트랜스포머 모델은 self-attention 구조를 통해 입력 데이터의 전역적
상관관계를 학습할 수 있다 [3]. 해당 기법을 이용하면 시퀀스의 특징
추출이 용이하며, 이러한 특성은 시간적 연속성이 중요한 CIR을 이용한
측위 연구에 적합하다. 따라서, 본 논문에서는 트랜스포머의
self-attention 구조를 이용하여 UE(user equipment)의 이동 경로에서
수집된 CIR 신호를 기반으로 하는 실내 위치 추정 알고리즘을 제안한다.

Ⅱ. 시스템 모델

p BS  BSBSBS ⊤에 위치하고 있는 BS(base station)에서 UE로
reference signal 을 전송한다. UE는 u UEyUE ⊤에 위치하며,

전송되는 수신 신호 의 수식은 다음과 같다.
   (1)

이때,  ,  , 는 각각 송신 신호, 채널 모델, 가우시안 백색
잡음을 나타내며, 송신 신호 와 수신 신호  간의
cross-correlation을 바탕으로 CIR을 추정할수 있다. CIR 는 개의
다중경로에 대한 선형 결합으로 표현할 수 있으며 이는 다음과 같다.

  
   (2)

 ,  , 는 각각 번째 경로의 크기, 위상, 시간 지연을 나타내고,는 Dirac’s delta function이다. 샘플링 주기는 로 정의하여 위의
연속 신호 h(t)를 이산 신호로 샘플링하여 머신러닝 학습의 입력값으로
이용할 수 있도록 하였다.

Ⅲ. Self-Attention 기반 실내 측위 알고리즘

본 논문에서는 UE가 수신 신호와 송신 신호의 상관 관계를 이용해 추
정한 CIR의 magnitude를 이용하여 입력데이터를구성한다. 개의 BS에
서 송신한 신호에 대한 CIR의 샘플링 인덱스   ⋯를 정의하여,m ∈ℝ×를 다음과 같이 구성한다.

m   ⋯⊤ (3)

이때 은 번째 BS를 통해송신한 CIR의 번째 샘플 magnitude이다.
BS가   ⋯개 존재하는 경우, 입력 데이터 M∈ℝ×는 다음
과 같다.

M m m ⋯m ⊤ (4)

트랜스포머모델에서는 attention 기법을 하나의 시퀀스에적용해자기
자신과의 연관성을 찾는 self-attention을 이용한다 [3]. CIR 데이터는 시
간 축에 따른 다중 경로 신호 성분을 포함하고 있으므로, 이러한 시간적
연관성을 self-attention 구조로 학습하기에 적합하다.

따라서 본 논문에서는 self-attention 구조를 이용하여 실내 측위 연구
를 진행한다. 번째 self-attention layer에서 연산식은 아래와 같다.

Attention  softmax⊤  (5)

이때, , , 는 각각 query, key, value를 나타내며 softmax⋅는
비선형 활성화 함수이다. 는 key의 dimension을 나타낸다. 입력층에서
입력 데이터 M을 , , 로 설정하고, 두 벡터 간의 attention score를
구하기 위해 와 ⊤를 내적한다. 이때 와 의 차원이 클수록 내적
값도 커지게 되어 모델 학습에 어려움이 생기므로 만큼 나눠주는
scaling 과정을 거친다 [3].

uMLPAttention (6)



개의 self-attenion layer 연산을 거친 후에는 마지막 출력층에서
MLP (multi-layer perceptron) layer를 적용해 최종적으로 UE의 추정 위

치 u을 구할 수 있다.
Ⅳ. 시뮬레이션 구성 및 결과 분석

A. 시뮬레이션 구성 및 실험 방법

제안한 알고리즘의 측위 성능 검증을 위해 2023 IPIN에서 제공한 CIR
데이터 세트를 이용하였다 [4]. 금속 구조물과 반사 벽이 있어 NLoS 및
multhpath가 존재하는 창고 환경에서 CIR을 수집하였으며, UE는
1.05m의 고정 높이를 가지고 자유롭게 움직이며 개의 BS를 통해
주기적으로 신호를전송받는다. 해당 data sets는 중심주파수 GHz ,
대역폭 MHz의 5G New Radio System을 사용하여 수집하였고,
샘플링 주기는  ns(샘플링 주파수  MHz)으로
샘플링되었다. 이때 샘플링 인덱스의 개수는   로 설정하였다.
데이터 세트는 111,277개의 RP(reference point)로 구성되어 있다. 이 중
RP 데이터의 80%는 training, 10%는 validation, 나머지 10%는 test에
이용하였다.

본 논문에서는 self-attention layer의 개수를 개로 설정하였고,
MLP 계층은 2개의 linear 함수로 구성하였다. Self-attention layer 3개의
출력크기는 (batch size, 8, 128)로 모두 동일하게구성하였고, MLP layer
계층에서는 순서대로 (batch size, 256), (batch size, 2)를 출력 크기로
가져 최종적으로 UE의 위치를 추정한다. 모델 학습 과정에서 optimizer는
Adam, batch size는 32, learning rate는 0.0001로 설정하였다.

B. 시뮬레이션 결과 및 분석

제안한 기법의 측위 성능을 평가하기 위해, 기존 연구에 주로 쓰이던
DNN (deep neural network) 모델의시뮬레이션을 함께 진행하고 결과를
분석하였다. DNN 모델의 파라미터 값은 self-attention에 사용한 값과동
일하게 설정하였고, 선형 레이어 2개를 이용해네트워크를 구성하였다. 그
림 2는 두모델의 측위 오차를 계산하고이를 CDF 그래프로 나타낸 결과
이다. Self-attention 기반 측위 기법에서는 CDF 50% 기준 거리 오차는
0.90m, DNN 기반 측위 기법에서는 2.63m로 약 65.8%의 개선된 성능을
보였다. 또한, CDF 80% 지점에서도 self-attention 기법은 1.51m, DNN
기법이 4.13m로 약 63.4%의 개선된 성능을 보였다.

이러한 결과는 self-attention 기반 모델이 시공간적인 패턴을 효과적
으로 학습하여정밀한위치 추정을 가능하게했음을보여준다. 특히, 복잡
한 환경 변화나다중경로간섭이 존재하는 조건에서도해당구조가 보다
강인한일반화 성능을 보여주는것을알 수있다. 다만 본실험은학습데
이터와유사한 환경에분포한데이터를이용해 테스트를진행하였기때문
에, 실제 다양한 환경에 대한 일반화 성능을 확보하기 위해서는 추가적인
실험과 함께 데이터 증강 기법 또는 정규화 기법 도입이 필요할 것으로
판단된다.

그림 2. 측위 오차 값에 따른 모델 별 CDF

Ⅳ. 결론

본 논문에서는 실내 환경에서의 측위 성능 향상을 목표로, 트랜스포머
의 self-attention 구조를 기반으로 한 측위 알고리즘을 제안하였다. 모델
입력 데이터로는 CIR의 magnitude 정보를 활용하였다. 실험 결과, CDF
50% 및 CDF 80% 지점에서 제안 모델이 DNN 모델 대비 65.8%, 63.4%
의 성능향상이일어난것을확인하였다. 후속연구에서는다양한환경변
화에도 높은 측위 성능을 유지할 수 있도록 연구를 확장할 예정이다.
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그림 1. 채널 임펄스 응답을 사용한 Self-attention 기반 측위 알고리즘 구조


