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요 약 

본 논문에서는 MaxCut 문제에 대한 QAOA 의 파라미터 설정 전략으로, Wang et al. (2018)이 제안한 페르미온 기반 해

석적 접근과 Qiskit Estimator 를 활용한 수치 최적화 기법을 비교 분석하였다. 실험 결과 level 1 QAOA 에서 해석적 접

근은 수치 최적화보다 근사비가 소폭 높았고, 실행 시간 면에서 월등히 효육적이었다. 이는 얕은 회로 깊이에서는 해석적 

전략이 실용적일 수 있음을 시사하며, 반면 𝑝 ≥ 2  이상에서는 수치 최적화 기법의 적용 가능성과 우위가 더욱 중요해질 

것으로 전망된다. 

 

 

Ⅰ. 서 론 

양자 알고리즘은 고전 알고리즘으로는 해결이 어려

운 문제를 보다 효율적으로 풀 수 있는 가능성을 제시

하며 활발히 연구되고 있다. 그 중 양자 근사 최적화 

알고리즘(QAOA)은 이산 조합 최적화 문제를 근사적

으로 해결하기 위한 대표적인 방법으로 주목받아 왔다

[1]. 

Wang et al. (2018)은 MaxCut 문제를 위한 𝑝 = 1 

QAOA 에 대해 해석적 파라미터 설정 방법을 제안하

였다[2]. 이 방법은 페르미온 표현과 문제의 대칭성을 

활용하여 최적 파라미터를 예측하며, 복잡한 수치 최

적화 없이도 우수한 성능을 보이는 것으로 알려져 있

다. 

본 논문에서는 MaxCut 문제를 위한 𝑝 = 1  QAOA

를대상으로, 해석적 접근과 Estimator 기반 수치 최적

화 접근을 비교 분석하였다. 특히, 효율성이 입증된 

COBYLA optimizer 를 사용하고[3], estimator 의 회

로 최대 실행 횟수를 1000회로 제한한 실용적인 조건

하에서 파라미터 설정 방식에 따른 성능을 평가하고자 

한다. 

Ⅱ. 본 론 

A. MaxCut 문제와 QAOA 

MaxCut 문제는 정점 집합 𝑉과 간선 집합 𝐸로 이

루어진 그래프 𝐺 = (𝑉, 𝐸)에서, 정점들을 두 부분집합

으로 분할하여 이들 사이를 가로지르는 간선의 개수

를 최대화하는 분할을 찾는 문제이다. 이 문제는 대

표적인 NP-hard 문제로, 다양한 조합 최적화 문제의 

근간이 된다. 

QAOA 를 MaxCut 문제에 적용할 때, 정점의 수는 

사용할 큐비트의 수와 일대일로 대응되며, 간선은 목

적 함수에 포함되는 항으로 변환되어 제약 조건의 형

태로 작용한다. 

회로는 문제의 목적 함수를 변환한 비용 해밀토니

안 𝐻𝐶와 믹서 해밀토니안 𝐻𝐵를 교대로 적용하는 방

식으로 구성된다. 이 과정을 level 𝑝만큼 반복하며, 

각 단계에서 파라미터 (𝛾, 𝛽)를 조정하여 최적 상태에 

가까운 양자 상태를 생성하는 것이 목표이다. 

QAOA 의 양자 회로는 그림 1 과 같이 초기 상태 

|𝑠⟩ = |+⟩⊗𝑛에서 시작하여, 두 해밀토니안에 해당하는 

유니터리 연산 𝑈(𝐻𝐶 , 𝛾) = 𝑒−𝑖𝛾𝐻𝐶 , 𝑈(𝐻𝐵, 𝛽) = 𝑒−𝑖𝛽𝐻𝐵 를 

교대로 적용함으로써 구성된다. 이 연산들은 각각 최

적 해에 가까운 방향으로 상태를 유도하고, 상태 공

간을 탐색할 수 있도록 한다. 

B. Qiskit Estimator 기반 수치 최적화 기법 

본 논문에서는 QAOA 회로의 파라미터 (𝛾, 𝛽)를 최

적화하기 위해 Qiskit 에서 제공하는 Estimator 를 활

용하였다. Estimator 는 주어진 양자 회로로부터 특정 

observable 의 기댓값을 추정하는 데 사용된다. 회로

가 파라미터화되어 있을 경우 해당 파라미터는 입력

으로 함께 제공된다. 

그림 1 QAOA 회로 구성 
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QAOA 회로는 다음과 같은 양자 상태 |𝛾, 𝛽⟩를 생

성한다: 

|𝛾, 𝛽⟩ = 𝑈(𝐻𝐵, 𝛽𝑝)𝑈(𝐻𝐶 , 𝛾𝑝)…𝑈(𝐻𝐵, 𝛽1)𝑈(𝐻𝐶 , 𝛾1)|s⟩ 

Estimator 를 이용하면, 상태 |𝛾, 𝛽⟩에 대한 비용 해밀

토니안의 기댓값: 

⟨𝛾, 𝛽|𝐻𝐶|𝛾, 𝛽⟩ 

을 계산할 수 있다. 고전적 최적화 기법을 이용해 파

라미터를 조정함으로써 기댓값을 최소화하는 최적의 

파라미터를 찾는다. 

C. 해석적 접근 

 Wang et al. (2018)은 MaxCut 문제에 QAOA 를 

적용할 때, 파라미터 (𝛾, 𝛽)를 해석적으로 추정할 수 

있는 접근법을 제안하였다[2]. 이 방법은 QAOA 회

로를 실제로 구성하지 않고도, 각 간선에 대해 비용 

함수의 기댓값을 계산함으로써 전체 기댓값을 평가하

고 최적 파라미터를 탐색할 수 있게 한다. 

level 1 QAOA 에서 전체 기댓값 𝐹(𝛾, 𝛽)는 각 간선

에 대한 부분 기댓값 ⟨𝐶𝑢𝑣⟩의 합으로 표현된다: 

𝐹(𝛾, 𝛽) = ∑ ⟨𝐶𝑢𝑣⟩

⟨𝑢𝑣⟩∈𝐸

 

여기서 정점 𝑢와 𝑣의 차수(degree)를 각각 𝑑𝑢 + 1 , 

𝑑𝑣 + 1, 간선 ⟨𝑢𝑣⟩을 포함한 삼각형의 수를 𝜆𝑢𝑣라 할 

때, ⟨𝐶𝑢𝑣⟩는 다음과 같다: 

⟨𝐶𝑢𝑣⟩

=
1

2
+
1

4
(sin 4𝛽 sin 𝛾)(cos𝑑𝑢 𝛾 + cos𝑑𝑣 𝛾)

−
1

4
(sin2 2𝛽 cos𝑑𝑢+𝑑𝑣−2𝜆𝑢𝑣 𝛾)(1 − cos𝜆𝑢𝑣 2𝛾) 

 이와 같이 각 간선의 기댓값은 해당 subgraph 의 

구조적 특성 𝑑𝑢 , 𝑑𝑣, 𝜆𝑢𝑣에 따라 결정된다. 본 연구에서

는 임의의 초기값에서 시작하여 고전적 Optimizer 를 

사용해 파라미터 (𝛾, 𝛽)를 반복적으로 조정하면서, 위 

식을 기반으로 비용 해밀토니안의 기댓값을 계산하였

다. 그 결과 회로 실행 없이도 효과적인 파라미터 최

적화를 수행할 수 있음을 확인하였다. 

D. 비교 분석 

수치 최적화 기법과 해석적 접근의 성능 비교를 위

해, 동일한 그래프를 대상으로 두 전략을 적용하였다. 

수치 최적화는 QAOA 에 대해 효율성이 입증[3]된 

COBYLA optimizer 를 기반으로 진행되었다. 

 

표 1 성능 분석 결과 

 표 1 은 동일한 그래프(그림 2)에 level 1 QAOA

를 20 회씩 반복 수행한 결과로, 각 전략별로 

Optimizer 반복횟수, 근사비(계산된 MaxCut/최적 

MaxCut), 실행 시간을 비교한 것이다. 해석적 접근

은 수치 최적화에 비해 근사비가 더 높았으며, 특히 

실행 시간 면에서 월등한 성능을 보였다. 

해석적 접근에서는 각 간선의 subgraph 특성인 

𝑑𝑢 , 𝑑𝑣, 𝜆𝑢𝑣 값만으로 기댓값을 계산할 수 있으므로, 회

로 실행 없이도 빠르게 MaxCut 결과를 도출할 수 있

다. 반면, 수치 최적화 방식은 최적 파라미터를 찾은 

후에도 해당 파라미터로 고정된 양자 회로를 반복 실

행하여 기댓값을 측정하는 과정이 필요하므로, 전체 

실행 시간이 증가한다. Optimizer 반복 횟수는 해석적 

접근에서 더 높게 나타났지만, 수식 기반 계산으로 

인해 전체적인 시간 효율성에서는 우위를 보였다. 이

러한 결과는 얕은 회로 깊이(level 1)의 QAOA 에서

는 해석적 전략이 수치 최적화보다 실용적일 수 있음

을 시사한다. 

Ⅲ. 결 론 

 본 연구에서는 MaxCut 문제에 대해 QAOA의 파라미

터 설정 전략을 비교 분석하였다. 실험은 동일한 그래

프 인스턴스를 대상으로, 두 전략을 각각 적용하여 반

복 수행한 결과를 바탕으로 분석되었다. 

분석 결과, 해석적 접근은 수치 최적화 기법에 비해 

높은 근사비를 보이며, 특히 실행 시간 면에서 매우 뛰

어난 효율을 보였다. 파라미터 계산에 있어 회로 실행 

없이도 결과를 도출할 수 있다는 점에서, 구조 기반 해

석적 전략은 실용적인 이점을 제공한다. 반면, 수치 최

적화는 다양한 초기 조건과 설정에 유연하게 대응할 수 

있는 장점을 가지지만, 반복 수행 및 측정 과정에서 시

간과 리소스가 상대적으로 많이 소모된다. 

따라서 얕은 회로 깊이의 QAOA 에서는 해석적 접근

을 우선적으로 고려하는 것이 효과적일 수 있으며, 이

는 실용적인 양자 알고리즘 설계에 있어 중요한 전략적 

선택 기준이 될 수 있다. 
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Optimizer 

반복횟수 
근사비 

실행시간 

[s] 

수치 최적화 기법 32.05 0.7249 9.6472 

해석적 접근 38.85 0.7448 0.0909 

그림 2 MaxCut 인스턴스 그래프 


