

Future Prospects and Challenges of OTFS in 6G Systems

Kiet Nguyen Tuan Tran, Gahyun Kim, Dongwook Won, and Sungrae Cho

School of Computer Science and Engineering, Chung-Ang University.

{kntran, ghkim, dwwon} @uclab.re.kr, srcho@cau.ac.kr

Abstract

Orthogonal Time Frequency Space (OTFS) modulation has emerged as a transformative waveform candidate for future wireless communication systems, particularly in the context of Sixth Generation (6G) networks. Unlike traditional multicarrier techniques such as Orthogonal Frequency Division Multiplexing (OFDM), OTFS operates in the delay-Doppler (DD) domain, offering inherent robustness to the severe channel impairments expected in 6G, such as high Doppler spreads and delay variations characteristic of high-mobility environments and new service scenarios. This paper provides a concise overview of the future prospects of OTFS in 6G systems, highlighting its potential to enhance performance in high-mobility scenarios.

I . Introduction

The evolution to 6G promises a connectivity paradigm shift with demanding high data rates, ultra-low latency, and new applications [1, 2], necessitating physical layer advancements, particularly in modulation, for challenging high-mobility and high-frequency environments [1]. Traditional OFDM struggles in such doubly dispersive channels due to ICI and ISI from Doppler and multipath effects [3, 4]. Unlike OFDM's time-frequency (TF) approach, OTFS modulates symbols in the delay-Doppler (DD) domain [3]. This fundamentally transforms time-varying channels into quasi-static, sparse DD representations, offering inherent resilience to channel dynamics by effectively capturing the environment's geometry and motion [3, 5]. Consequently, OTFS has emerged as a strong 6G candidate [1, 3, 4].

II. Future Prospects of OTFS in 6G

A key theoretical advantage is potential full diversity exploitation by converting time-varying channels to quasi-static DD ones, all transmitted symbols can experience full channel diversity make it benefit in high-mobility scenario [3, 6]. Its DD domain operation offers inherent robustness to high Doppler spreads, mitigating ICI and ISI, making it ideal for V2X, high-speed rail, and UAVs, leading to lower BER and more stable links [1, 3, 5].

Additionally, OTFS enables new 6G services: its DD representation naturally captures range (delay) and velocity (Doppler) for ISAC, making it excellent for joint communication and sensing [6]. For Massive IoT and NTNs, its lower PAPR benefits power-constrained devices, and Doppler robustness aids LEO satellite links [5].

Furthermore, its potential phase noise robustness is crucial for reliable high-frequency (mmWave/THz) communication [3, 5]. OTFS also promises improved spectral efficiency due to better channel representation and DD domain multipath resolution, enhancing diversity [3, 6]. Combining it with NOMA or RSMA can further augment this [7, 8].

III. Challenges of OTFS in 6G.

Key OTFS challenges primarily involve significant receiver complexity. This stems from the computationally intensive nature of optimal signal detection [3, 5, 8] and the difficulty of accurate channel estimation in the delay-Doppler domain, especially under demanding conditions [1, 5, 6, 7]. Additionally, waveform design and implementation present considerable issues, necessitating effective pulse shaping and windowing to mitigate interference [5, 6], careful guard interval management for robust yet spectrally efficient operation [5, 6], and solutions for high Peak-to-Average Power Ratio (PAPR) which can degrade amplifier performance [3, 6].

Furthermore, integrating OTFS with advanced 6G technologies for future networks introduces substantial complexities. This necessitates dedicated research into scalable massive MIMO-OTFS solutions, novel approaches for combining OTFS with reconfigurable intelligent surfaces (RIS), robust AI-aided design and optimization methodologies, and strategies for ensuring harmonious coexistence with diverse existing and emerging waveforms [5].

In addition to these challenges, widespread adoption also hinges on resolving several crucial practical implementation issues. These encompass achieving and

maintaining precise synchronization, effectively contending with hardware impairments such as phase noise and non-linearities [3, 5], and successfully meeting the stringent real-time processing demands of dynamic, wideband communication scenarios [1].

IV. Conclusion

OTFS modulation stands out as a highly promising technology for 6G systems, primarily due to its inherent ability to effectively manage the challenges of high-mobility and doubly dispersive channels by operating in the delay-Doppler domain. However, the transition from theoretical promise to practical deployment necessitates concerted research efforts to overcome substantial challenges. These include reducing receiver complexity for signal detection and channel estimation, optimizing waveform design for spectral and power efficiency, ensuring robust integration with massive MIMO and RIS, and addressing practical implementation hurdles such as synchronization and hardware impairments. Continued innovation and standardization efforts will be paramount in unlocking the full capabilities of OTFS; for instance, it can be combined with Deep Reinforcement Learning for implementation in dynamic environmental scenarios, such as UAV communications, video streaming, and underwater applications [9, 10, 11].

ACKNOWLEDGMENT

This work was supported in part by the IITP (Institute of Information & Communications Technology Planning & Evaluation) - ITRC (Information Technology Research Center) (IITP-2025-RS-2022-00156353, 50%) grant funded by the Korea government (Ministry of Science and ICT) and in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00209125).

REFERENCES

- [1] H. Tataria, M. Shafi, A. F. Molisch, M. Dohler, H. Sjöland and F. Tufvesson, "6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities," in *Proceedings of the IEEE*, vol. 109, no. 7, pp. 1166–1199, July 2021.
- [2] Z. Zhang *et al.*, "6G Wireless Networks: Vision, Requirements, Architecture, and Key Technologies," in *IEEE Vehicular Technology Magazine*, vol. 14, no. 3, pp. 28–41, Sept. 2019
- [3] S. Diddi, P. Allambay, B. S. Nalamala, B. Kumar, V. R. Kumbhare and A. K. Varma, "OTFS: A Review on High-Mobility Modulation Scheme for 6G or Beyond," *2025 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI)*, Gwalior, India, 2025, pp. 1–5.
- [4] Z. Wei, S. Li, W. Yuan, R. Schober and G. Caire, "Orthogonal Time Frequency Space Modulation—Part I: Fundamentals and Challenges Ahead," in *IEEE*

Communications Letters, vol. 27, no. 1, pp. 4–8, Jan. 2023.

- [5] L. Xiao, S. Li, Y. Qian, D. Chen and T. Jiang, "An Overview of OTFS for Internet of Things: Concepts, Benefits, and Challenges," in *IEEE Internet of Things Journal*, vol. 9, no. 10, pp. 7596–7618, 15 May 15, 2022.
- [6] H. S. Rou *et al.*, "From Orthogonal Time–Frequency Space to Affine Frequency–Division Multiplexing: A comparative study of next-generation waveforms for integrated sensing and communications in doubly dispersive channels," in *IEEE Signal Processing Magazine*, vol. 41, no. 5, pp. 71–86, Sept. 2024.
- [7] Z. Ding, R. Schober, P. Fan and H. Vincent Poor, "OTFS-NOMA: An Efficient Approach for Exploiting Heterogenous User Mobility Profiles," in *IEEE Transactions on Communications*, vol. 67, no. 11, pp. 7950–7965, Nov. 2019.
- [8] A. K. Kowshik, S. Gurugopinath and S. Muhaidat, "Deep Learning-Based Detection for RSMA With Orthogonal Time Frequency Space Modulation," in *IEEE Communications Letters*, vol. 29, no. 4, pp. 669–673, April 2025.
- [9] W. J. Yun, S. Park, J. Kim, M. Shin, S. Jung, D. A. Mohaisen, and J.-H. Kim, "Cooperative multiagent deep reinforcement learning for reliable surveillance via autonomous multi-uav control," *IEEE Transactions on Industrial Informatics*, vol. 18, no. 10, pp. 7086–7096, 2022.
- [10] W. J. Yun, D. Kwon, M. Choi, J. Kim, G. Caire, and A. F. Molisch, "Quality-aware deep reinforcement learning for streaming in infrastructure-assisted connected vehicles," *IEEE Transactions on Vehicular Technology*, vol. 71, no. 2, pp. 2002–2017, 2022.
- [11] D. Kwon, J. Jeon, S. Park, J. Kim, and S. Cho, "Multiagent ddpg-based deep learning for smart ocean federated learning iot networks," *IEEE Internet of Things Journal*, vol. 7, no. 10, pp. 9895–9903, 2020.