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Abstract—Quantum entanglement lies at the heart of many
quantum information protocols, yet detecting it often requires
full tomography—a resource-intensive process. In this work, we
develop and analyze a machine-learning approach that classifies
entanglement in two-qubit states using only a limited subset
of Pauli measurements. Our approach leverages a feedforward
neural network, trained on two large synthetic datasets: one
comprising only pure states and another consisting of pure and
mixed states. We systematically investigate how classification
accuracy changes with the number of measured observables,
comparing cases in which we measure 3, 5, 7, or 9 different
tensor-product Pauli operators. Ground-truth labels are assigned
via concurrence, a well-established measure of two-qubit entan-
glement. Our results demonstrate that increasing the number of
observables leads to higher classification accuracy, with a peak of
99% for pure states and 97% for mixed states when using nine
observables. These findings underscore the capacity of partial
measurement schemes, coupled with neural networks, to reduce
measurement overhead in near-term quantum experiments.

Index Terms—Quantum entanglement, two-qubit states, ma-
chine learning, neural networks, partial measurements, quantum
state characterization, concurrence, Pauli operators.

I. INTRODUCTION

Entanglement is a fundamental resource that distinguishes
quantum mechanics from classical physics and underpins
many quantum information tasks, such as quantum telepor-
tation, superdense coding, and quantum key distribution [I].
Efficiently distinguishing separable from entangled states [2],
[3] is therefore critical for both theoretical investigations
and practical applications. Traditionally, one might perform
full state tomography, reconstructing the density matrix from
complete measurement data. However, as the system size
grows, quantum tomography becomes prohibitively expensive,
scaling exponentially with the number of qubits.

This work addresses a crucial question: Can we reliably
detect two-qubit entanglement by measuring fewer observables
than are required for full tomography? Specifically, we propose
a machine-learning (ML) framework [4], [5] that takes as input
a small subset of Pauli measurement outcomes i.e. just 3, 5,
7, or 9 tensor-product Pauli operators and predicts whether
a two-qubit state is entangled or separable. We thoroughly
assess the performance of a feedforward neural network on
two large datasets: one composed solely of pure states and one
containing both pure and mixed states. We label states using

the concurrence criterion, thus providing consistent ground-
truth measures of entanglement [6].

This paper improves upon existing studies in several ways:

o Systematic Variation of Measurement Operators: We
explore four distinct subsets of Pauli operators, quanti-
fying the trade-off between measurement overhead and
classification accuracy.

o Comprehensive Dataset Generation: We generate
100,000 states in each scenario (pure and mixed), en-
suring broad coverage of separable and entangled states.
Importantly, the mixed-state dataset includes both convex
mixtures of product states and entangled states from the
Ginibre ensemble, ensuring diverse and well-separated
examples.

o Novelty in Partial-Measurement ML: By focusing on
a minimal yet strategically chosen set of Pauli mea-
surements, we showcase how partial measurement data
can suffice to accurately detect entanglement. Our find-
ings underscore the feasibility of implementing resource-
efficient witness schemes in near-term quantum plat-
forms.

In the following Section II, we introduce the theoretical
background of concurrence and partial measurement. We then
detail how we generate and label the states, specifying pure
vs. mixed-state datasets in Section III. Afterward, we describe
our neural network model and training procedure in Section
IV. The results are presented and discussed in Section V,
including a thorough comparison of different measurement sets
and a justification of the measured improvement. Finally, we
conclude with potential extensions and practical implications
in Section VI

II. THEORETICAL BACKGROUND

A. Two-Qubit Entanglement and Concurrence

For a general two-qubit state p, a standard measure of
entanglement is the concurrence, C'(p). In the special case
of a pure two-qubit state |¢)), concurrence is defined by

C(v)) =l {¥*|(oy ©@ ay)|9) |, (D

where |¢*) denotes the complex conjugate of [¢) in the
computational basis, and o is the Pauli Y operator. A pure
two-qubit state is separable if and only if its concurrence is
Zero.



For mixed states, one computes C(p) by first determining
the eigenvalues of the non-Hermitian matrix R = p(o, ®
oy)p*(oy @ ay). Let A1, A, Az, A be the square roots of the
eigenvalues of the positive semi-definite matrix R, sorted in
descending order (A1 > Ay > A3 > A4). The concurrence of
p is then given by the standard Wootters formula [6]:

C(p) = max{(), )\1 - )\2 - )\3 - )\4}, (2)

A two-qubit state is entangled if and only if C(p) > 0.
Here, we apply a practical buffer zone on the value of C(p)
to account for numerical round-off, defined in section III.

B. Partial Measurements with Tensor-Product Pauli Operators

Full quantum state tomography of a two-qubit system re-
quires measurements in multiple bases to reconstruct all 16
density-matrix elements. In contrast, we consider smaller sets
of tensor-product Pauli operators. The standard single-qubit
Pauli matrices are
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We define, in Table I, four fixed subsets of tensor-product
Pauli operators. Each subset Oy, contains k£ observables, where
k € {3,5,7,9}. For every two-qubit state p (or |¢)) in the
pure-state case), we record the real expectation value

(O) =Tr[pO], for O € O “4)

which yields a k-dimensional real feature vector forming
the input vector for our machine learning classifier.

TABLE 1
EXACT TENSOR-PRODUCT PAULI OPERATOR SUBSETS
k ‘ O
3 {O'x®0'x, a'y®0'y: a'z®0'z}
51 O3U{0sR®0y, oy @0z}
7| OsU{0x®0z, 02 R0z}
9 | OrU{oy®o0, 0, R0y}

III. DATASET GENERATION

We produce two separate datasets, each of size N =
100, 000. One dataset comprises pure two-qubit states, while
the other contains a balanced mix of pure and mixed states. In
both datasets, 50% of the states are labeled “separable” and
50% labeled “entangled”.

A. Pure-State Dataset

All pure two-qubit states are sampled from the uniform
(Haar) measure on C*. Their concurrence is evaluated as given
by (1.

States with

C(ly)) <107

are labeled separable, while those with
C(lv)) > 1077

are labeled entangled. Candidates falling into the buffer zone
1079 < € < 1077 are discarded. Sampling continues until
Npyre = 100,000 states (balanced 50-50 between classes) are
obtained.

B. Mixed-State Dataset
For mixed states we again target a 50-50 class balance with
a concurrence buffer around zero.

Separable mixed states: Each separable density matrix is
generated as a generic convex mixture of product states:

K
pp = D60V ) @ (I o). )
k=1

where K ~ Unif{2,3,4,5},
(p1,...,pK) ~ Dirichlet(1,1,...), and each single-qubit
pure state |¢§f ) is sampled uniformly from the Bloch
sphere. Samples whose concurrence

the coefficient vector

Clpsep) > 107°

are rejected and resampled.
Entangled mixed states: Entangled states are drawn from
the Ginibre ensemble:

GGt
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with G € C*** having i.i.d. complex Gaussian entries. We
accept samples satisfying

C(p) > 1077,

discard those in the buffer zone 1072 < C(p) < 1077, and
top up the entangled pool with a 10% quota of Werner-type
mixtures:

pBen(N) = (1—A)|<I>+><<I>+|+AZ, A~ U[0,0.2]. (7)

Finally, the union of the separable and entangled pools is
shuffled, ensuring no trivial order effects. The dataset is then
split into training, validation, and test sets as described in
following section.

IV. MACHINE LEARNING FRAMEWORK

A. Neural Network Architecture

We employ a feedforward neural network implemented in
TensorFlow. For each measurement subset (3, 5, 7, or 9 op-
erators, denoted by k), the network input layer has dimension
k. The architecture is:

Input(k)
Dense (32,ReLU)
Dense (16,ReLU)
Dense (1,Sigmoid)

Dropout (0.25)

Fig. 1. Feedforward neural network architecture mapping k-dimensional Pauli
inputs to binary entanglement output.



TABLE II
PURE-STATE MODEL PERFORMANCE FOR DIFFERENT NUMBERS OF
OBSERVABLES
Obs  Test Acc. Loss Val Ep. Val Loss Val Acc.
3 75.13% 0.4672 156 0.4701 74.89%
5 88.98% 0.2633 175 0.2705 88.48%
7 93.98% 0.1656 136 0.1687 93.89%
9 99.16% 0.0422 150 0.0439 99.09%

where the final neuron outputs a probability 4§ € (0, 1) indi-
cating the model’s prediction of entanglement (1 for entangled,
0 for separable).

B. Training Procedure

We standardize each feature across the training set using
a standard scaler. The data is split into 80% training and
20% testing, with 20% of the training set used for validation.
Training is performed for up to 200 epochs using the Adam
optimizer with a learning rate of 5 x 10~*. We use a binary
cross-entropy loss function. Early stopping is implemented,
halting training if the validation loss does not improve for 25
consecutive epochs, and restoring the model weights from the
epoch with the lowest validation loss. The batch size used
during training is 64.

V. EXPERIMENTAL RESULTS

We present results for both the pure-state and mixed-state
datasets. Each table below summarizes the performance on the
test set, including accuracy and loss, along with details from
the validation phase during training.

A. Pure States

Table II shows performance metrics on the pure-state
dataset. Even with only 3 Pauli observables, the network
achieves roughly 75% accuracy. Performance significantly
improves as more observables are included. With 9 measured
observables, accuracy reaches 99.16%, demonstrating that
partial measurements can be highly effective for entanglement
detection in pure states.

These high accuracies reflect that pure-state concurrence
can often be inferred from a few key correlators (e.g., com-
binations involving o, ® 0., 0y ® 0y, 0, ® 0,). With a
sufficiently rich measurement basis (like 9 operators), the
network effectively learns the geometric separation between
separable and entangled pure states.

B. Mixed States

Table III summarizes the performance on the more chal-
lenging mixed-state dataset. While accuracies are slightly
lower than for pure states, especially with fewer observables,
the trend of improvement with more measurements holds.
Using 9 observables yields a high test accuracy of 97.58%,
demonstrating the method’s utility even for complex mixed
states.

The significant accuracy increase from 3 to 9 observables
highlights the necessity of richer measurement data for mixed

TABLE III
MIXED-STATE MODEL PERFORMANCE FOR DIFFERENT NUMBERS OF

OBSERVABLES
Obs  Test Acc. Loss Val Ep. Val Loss Val Acc.
3 68.24% 0.5730 91 0.5735 67.93%
5 87.12% 0.2614 38 0.2666 86.82%
7 94.14% 0.1232 78 0.1254 93.99%
9 97.58% 0.0618 118 0.0607 97.74%

states, where entanglement can be hidden in subtle correlations
and off-diagonal density matrix elements that require multiple
complementary measurement settings to probe effectively.

VI. CONCLUSION AND OUTLOOK

We have demonstrated a machine-learning approach for
detecting entanglement in two-qubit states using only partial
measurement data from 3, 5, 7, or 9 tensor-product Pauli
observables. Trained on large synthetic datasets, a simple feed-
forward neural network achieved high classification accuracy:
over 99% for pure states and nearly 98% for mixed states
when provided with 9 observables.

These results are promising for near-term quantum comput-
ing platforms where measurement resources are constrained.
By measuring a strategically chosen subset of operators and
using a trained neural network, entanglement can be identified
much more efficiently than through full state tomography, sav-
ing experimental time and classical post-processing resources.

Future work could explore several directions:

o Developing adaptive measurement strategies where the
choice of the next measurement depends on previous
outcomes, potentially reducing the required number of
observables further.

« Incorporating noise models into the training process to
make the classifier robust to experimental imperfections
found in real quantum hardware.

« Extending the methodology to detect multipartite entan-
glement in systems with more than two qubits, where the
resource cost of tomography scales even more unfavor-
ably.

This work shows that machine learning offers a viable
path towards resource-efficient quantum state characterization,
helping to bridge the gap between theoretical concepts like
entanglement and their practical verification in experiments.
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