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Abstract—Quantum state discrimination is a foundational task
in quantum information processing. In conventional scenarios,
multiple identical copies of a quantum state are available, allow-
ing high-confidence decision-making via repeated measurements.
However, practical constraints in quantum sensors, low-latency
communication, and embedded quantum devices may allow only
a single measurement per state. In this paper, we investigate
the one-shot quantum state discrimination problem: given a
single projective measurement on an unknown qubit state chosen
from a known set, how accurately can the state be identified?
We focus on binary discrimination between two pure states,
examining the influence of state overlap and prior distribution
on classification accuracy. Using Bayesian optimal decision rules,
we show that meaningful accuracy can be achieved even in
the one-shot regime, especially with favorable priors or state
separation. This work highlights the viability of low-resource
quantum inference strategies and their relevance to practical
quantum technologies.

Index Terms—Quantum state discrimination, one-shot mea-
surement, Bayesian inference, quantum decision theory, low-
resource quantum systems.

I. INTRODUCTION

Quantum state discrimination is a fundamental problem in
quantum information theory with implications for quantum
communication [1], [2], quantum sensing [3], and quantum
cryptography. It is the task of identifying which quantum state
from a known set was prepared, using measurement data.
The optimal performance in such tasks is constrained by the
indistinguishability of non-orthogonal quantum states, which
is a key non-classical feature of quantum mechanics [4], [5],
[6].

In most theoretical treatments and practical implemen-
tations, discrimination strategies assume access to multiple
copies of the quantum state. Repeated measurements allow
inference through statistical estimation and error mitigation.
However, in emerging quantum technologies such as energy-
efficient quantum sensors, mobile quantum platforms, and
fast quantum communication protocols, resources are often
limited [7]. Coherence times may be short, power consumption
must be minimized, and only one-shot measurements may be
feasible.

This paper investigates the problem of one-shot quantum
state discrimination. We assume that a quantum system is
prepared in one of two known pure states, drawn from a
known prior distribution. A single projective measurement is
allowed, and the observer must classify the state based on
this outcome alone. The challenge is to determine the best

possible decision rule under these conditions and to quantify
how performance varies with the geometry of the state space
and the prior information.

Our work focuses on binary pure-state discrimination, em-
ploying projective measurements in the computational basis.
We use Bayesian decision theory to derive an optimal one-
shot classifier and perform a detailed numerical study of
its performance across a grid of state overlaps and prior
probabilities. We produce a two-dimensional heatmap showing
the variation of classification accuracy and analyze the limiting
behavior in symmetric and asymmetric regimes.

II. PROBLEM SETUP

Let H = C2 denote the Hilbert space of a single qubit. We
define two pure states parametrized by an angle θ:

|ψ1⟩ = cos(θ) |0⟩+ sin(θ) |1⟩ , (1)
|ψ2⟩ = sin(θ) |0⟩+ cos(θ) |1⟩ . (2)

Here, θ ∈ (0, π/2) determines the degree of non-orthogonality.
The inner product between the states is:

⟨ψ1|ψ2⟩ = sin(2θ), (3)

and hence the fidelity between them is F = | ⟨ψ1|ψ2⟩ |2 =
sin2(2θ).

The task is to identify the state after a single measurement.
We assume a projective measurement in the standard basis
{|0⟩ , |1⟩} , which yields outcome m ∈ 0, 1. The measurement
statistics are:

P (0|ψ1) = cos2(θ), P (0|ψ2) = sin2(θ), (4)

P (1|ψ1) = sin2(θ), P (1|ψ2) = cos2(θ). (5)

The prior probabilities are P (ψ1) = p and P (ψ2) = 1− p.
Using Bayes’ theorem [8], the posterior is:

P (ψi|m) =
P (m|ψi)P (ψi)

P (m)
, (6)

where the marginal P (m) ensures normalization. The Bayes-
optimal decision is to select the state with the higher posterior
probability.



III. BAYESIAN ONE-SHOT CLASSIFIER

The decision rule is:

Predict ψ1 if P (ψ1|m) > P (ψ2|m), (7)

and vice versa. This rule minimizes the expected classification
error. Since we use fixed measurement operators, the opti-
mality is only within the class of classifiers using a single
computational basis measurement.

We note that for non-orthogonal states, a single projective
measurement cannot achieve perfect discrimination. The Hel-
strom bound [9] provides a lower bound on error probability:

P ∗
e =

1

2

(
1−

√
1− 4p(1− p)| ⟨ψ1|ψ2⟩ |2

)
, (8)

but this assumes optimal measurements, whereas we restrict
ourselves to a single fixed basis.

IV. SIMULATION METHODOLOGY

To systematically evaluate the performance of the Bayesian
one-shot classifier, we implemented a Monte Carlo simulation
across a dense grid of state parameters. The simulation iterates
over a 500 × 500 grid of (θ, p) pairs, where θ controls the
overlap between the two quantum states and p denotes the
prior probability of state |ψ1⟩. For each configuration, 1000
independent trials are conducted. In each trial, a quantum state
is sampled according to the prior distribution, a projective
measurement is simulated in the computational basis, and the
Bayes-optimal decision rule is applied to classify the state.
The proportion of correctly classified outcomes provides an
empirical estimate of classification accuracy. The complete
procedure is summarized in Algorithm 1, which captures the
logic used to generate the performance heatmap presented in
the results section.

Algorithm 1 Bayesian One-Shot State Discrimination Simu-
lation

1: for all pairs (θ, p) in 500×500 grid do
2: Set accuracy counter A← 0
3: for i = 1 to 1000 do
4: Sample true state ψ ∈ {ψ1, ψ2} using prior p
5: Perform projective measurement in the computational

basis
6: Compute likelihoods P (m|ψi) and posteriors

P (ψi|m)
7: Predict state ψ̂ using Bayes-optimal rule
8: if ψ̂ = ψ then
9: Increment accuracy counter A← A+ 1

10: end if
11: end for
12: Compute accuracy a = A/1000
13: Record (θ, p, a)
14: end for

V. RESULTS

A. Heatmap Visualization

The heatmap in Figure 1 shows classification accuracy as a
function of the state angle θ and the prior probability p. Ac-
curacy is lowest when θ ≈ 45◦ and p = 0.5, where the states
are maximally overlapping and the prior is uninformative.
Accuracy improves as the states become more distinguishable
(i.e., as θ approaches 0° or 90°) or as the prior becomes biased
toward one state.

Fig. 1. Classification accuracy as a function of prior P (ψ1) and state overlap
angle θ (degrees).

The worst-case performance occurs near θ ≈ 45◦ (maximal
overlap) and p = 0.5 (uniform prior), where the states are
nearly indistinguishable and the classifier reduces to random
guessing. As θ increases toward 90◦, the states become or-
thogonal, enabling nearly perfect classification accuracy.

B. Selected Configuration Comparison

To complement the heatmap visualization, Table I reports
classification accuracy for a few representative (θ, p) set-
tings. These examples illustrate specific points within the
performance landscape and provide numerical confirmation of
the general trends. Notably, configurations with either highly
biased priors or state angles far from maximal overlap (i.e.,
away from θ = 45◦) yield significantly higher accuracy.
Conversely, when both the states are nearly indistinguishable
and the prior is uninformative, performance approaches the
level of random guessing.

TABLE I
ONE-SHOT ACCURACY FOR SELECTED CONFIGURATIONS

θ (°) P (ψ1) P (ψ2) Accuracy

22.5 0.5 0.5 0.860
22.5 0.9 0.1 0.894
45.0 0.5 0.5 0.495
45.0 0.9 0.1 0.903



VI. DISCUSSION

The results reveal the dual role of geometric distinguishabil-
ity and prior asymmetry. The classifier leverages both features:
geometric separation allows more informative measurement
outcomes, while skewed priors reduce uncertainty about the
state.

Interestingly, even in the one-shot regime with a fixed
measurement basis, the Bayes-optimal rule significantly out-
performs random guessing for many configurations. This sug-
gests that in low-latency or resource-constrained environments,
carefully designed prior distributions and state preparations
can enable effective quantum inference with minimal mea-
surement.

VII. CONCLUSION AND FUTURE WORK

We explored the limits of quantum state discrimination
under the extreme constraint of one-shot measurement. Our
simulation-based analysis shows how prior probabilities and
state geometry interact to shape classification accuracy. A
Bayes-optimal decision rule can achieve surprisingly good
performance, particularly with asymmetric priors or near-
orthogonal states.

This study motivates several directions for future work,
including:

• Extending to mixed states and realistic noise models.
• Investigating measurement basis optimization under

single-shot constraints.
• Applying adaptive or learned decision rules for multi-

class settings.
• Incorporating quantum circuits or NISQ devices [10] in

real-time discrimination tasks.
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