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Abstract—Quantum state preparation (QSP) is a fundamental
task in quantum computing, essential for initializing algorithms
and protocols with high fidelity. However, achieving reliable
initial state on Noisy Intermediate-Scale Quantum (NISQ) de-
vices remains challenging due to decoherence and operational
noise. In this work, we formulate QSP as a reinforcement
learning (RL) problem and investigate the effectiveness of two
RL algorithms—Policy Gradient (PG) and Deep Q-Network
(DQN)—in preparing a target |+) state from the |0) state under
dephasing and depolarizing noise. Experimental results show that
DQN achieves higher fidelity and stronger robustness to noise,
highlighting its effectiveness for quantum control in realistic,
noisy environments.

I. INTRODUCTION

Quantum state preparation (QSP) is an essential prereq-
uisite for many quantum technologies, including quantum
computing, communication, and metrology [1], [2], [3]. The
ability to initialize a quantum system into a desired state with
high fidelity underpins algorithms and protocols across these
domains [4]. However, achieving reliable state preparation on
real hardware is notoriously challenging due to the presence of
quantum noise and decoherence in Noisy Intermediate-Scale
Quantum (NISQ) devices [5]. Common noise processes such
as dephasing and depolarizing errors can drastically reduce the
fidelity of prepared states. These noise channels are widely
used to model realistic qubit decoherence and gate errors [6].
Overcoming such noise-induced errors is crucial for unlocking
the full potential of QSP in practical devices.

Conventional quantum control methods (e.g., gradient-based
pulse shaping or optimal control) often assume an accurate
system model and yield open-loop control sequences that
do not adapt to noise fluctuations, leading to suboptimal
performance in the presence of unmodeled disturbances [7]. To
address these limitations, this work investigates reinforcement
learning (RL) as a model-free, noise-resilient alternative for
QSP, enabling agents to learn robust control policies directly
from interaction with a noisy quantum environment.

II. METHODOLOGY

QSP is formulated as a RL problem in which an agent learns
a control policy to transform an initial qubit state into a target
state. The qubit is represented by a density matrix p € C?*2,
with fidelity to the target state praree; used as the reward signal.
The agent interacts with the system over discrete time steps,
and each episode ends when the fidelity exceeds a set threshold
or after a maximum number of steps 7.

At each time step t, the agent selects an action correspond-
ing to a unitary operation U, from a discrete action set. This
operation evolves the state as
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where &, is a noise channel parameterized by noise level .
The fidelity between the evolved state and the target is used
as a reward signal and is defined as
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The environment uses the Bloch sphere representation for
state observation and includes four discrete control actions:
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where 0t = %“, and N is the number of time steps in an

episode. These unitary operations represent rotations around
the respective Pauli axes and the identity, enabling the agent
to explore the state space.

Two quantum noise models are implemented to simulate
real-world decoherence effects. The first is a dephasing chan-
nel, modeling phase noise, defined as
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The second is a depolarizing channel, which introduces
isotropic noise by randomly applying Pauli operations, and

is given by
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Two RL algorithms are employed for this task. The first
is a Policy Gradient (PG) method using the REINFORCE
algorithm, where the policy 7y (a | s) is optimized to maximize
expected cumulative reward. The gradient update is computed
as

T

Vo J(0) = Er, Zve log mg(as | s¢) Ry | (6)

t=0
where 6 are the parameters of the policy network.

The second approach is a Deep Q-Network (DQN), which
approximates the optimal action-value function (s, a) using
a neural network. The Q-values are updated by minimizing
the temporal difference (TD) error:
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Figure 1. Comparison of maximum fidelity achieved by PG (' = 23) and
DQN (T = 2°) versus varying dephasing and depolarizing noise.

The agent selects actions using an e-greedy policy during
training and leverages a target network and experience replay
for stability.

III. RESULTS

We evaluate the performance of trained RL agents; PG and
DOQN for the task of QSP, specifically transforming the initial
|0) state into the target |+) state, under varying time steps
and noise levels. All models were trained for 1200 episodes
with 64 time steps per episode using the Adam optimizer and
a learning rate of 0.001. For DQN, exploration was managed
using an e-greedy strategy with an initial ¢ = 1.0, decayed
by a factor of 0.995 per episode to a minimum of 0.01.
Performance during evaluation was measured over 100 test
trajectories, using a fixed initial quantum state across all noise
levels to ensure consistency.

Analyzing the impact of noise strength -, varied between
0.01 and 0.1 as shown in Fig. 1, DQN consistently demon-
strates stronger robustness to decoherence across both dephas-
ing and depolarizing channels. Its fidelity remains above 95%
even at the highest noise level tested (y = 0.1), indicating
effective generalization under noisy conditions. In contrast,
PG exhibits greater sensitivity to noise, especially under
depolarizing noise, with a notable drop in fidelity at higher
values of ~.

The comparison of average fidelity across increasing max-
imum time steps 7' with fixed noise (y = 0.05), shown in
Fig. 2, reveals differences in the convergence behavior of the
two methods. DQN achieves rapid improvement, reaching a fi-
delity of 97% at early time steps under both noise models. PG,
on the other hand, shows a slower but steady improvement,
attaining maximum fidelities of 89% under dephasing and 83%
under depolarizing noise at 7" = 23. These trends suggest that
DQN can achieve high fidelity under minimal time steps,while
PG requires more time steps to reach its peak performance and
is less effective in noisy environments.

IV. CONCLUSION

This study explored QSP in noisy environments using RL,
comparing the performance of PG and DQN algorithms.
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Figure 2. Comparison of fidelity achieved by PG and DQN under dephasing
and depolarizing noises (y = 0.05) along maximum time steps 7.

Through extensive training and evaluation across varying time
steps and noise levels, we observed that DQN consistently
outperformed PG, achieving higher fidelities more rapidly
and maintaining strong robustness under both dephasing and
depolarizing noise. These results suggest that value-based
methods like DQN are more effective for fast and robust QSP
in noisy environments.
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