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Abstract—We investigate the practical gains of multi-copy
quantum discrimination on a real-world dataset. Using the
Titanic survival data, we embed every two-feature pair into a
qubit space via three schemes: Amplitude, phase, and angle
encoding, and form class density operator by averaging. For
each encoder, we apply the Helstrom measurement to n-copy
tensor products (1 ≤ n ≤ 8), recording test accuracy and the
commutator between two density classes. Contrary to asymptotic
theory, our experiments reveal no strong copy-dependent accu-
racy gains (r = 0.042) and only a weak positive link between
non-commutativity of the class density operator and accuracy
(r = 0.174). Surprisingly, the commutator norm itself slightly
decreases with n (r = −0.114). These results show that, in low-
dimensional, finite-sample settings, simply increasing the number
of copies does not guarantee improved classification performance.

I. INTORDUCTION

Quantum hypothesis testing provides a rigorous framework
for binary classification by leveraging the Helstrom measure-
ment [1], which is provably Bayes-optimal for distinguishing
between two quantum states. Theoretically, when the two
density operators do not commute, preparing n copies of each
state in the asymptotic limit yields an exponential decay of the
minimum error probability—known as the quantum Chernoff
bound [2]—implying that additional copies should monoton-
ically improve classification accuracy. However, real-world
datasets often violate these ideal conditions [3], and empirical
guidance on how copy number, operator non-commutativity,
and embedding choice interact in practice remains scarce.

In this paper, we systematically explore these interactions
on the classical Titanic survival dataset by evaluating every
two-feature combination of passenger attributes using the
Helstrom Quantum Classifier (HQC) [4] and, for comparison,
the classical algorithms Decision Tree, Random Forest (RF),
Logistic Regression (LR), Support Vector Machine (SVM),
and k-Nearest Neighbors (k-NN) [5]. For the quantum part,
we embed each two-dimensional feature vector into a quan-
tum state via three distinct schemes—amplitude, phase, and
angle encoding [3]—and construct class prototypes by simple
averaging. For each encoder, we then apply the Helstrom
measurement on n-copy tensor products (with n ranging
from 1 to 8) and record both the test accuracy and the the
commutator. Finally, we compute the correlations to quantify
(a) how non-commutativity grows with n,

Figure 1: Plot of accuracy vs commutation norm of class
density operators of HQC.

(b) how accuracy grows with n, (c) how accuracy relates to
non-commutativity, and (d) how HQC compares to classical
algorithm.

Our key empirical findings are that, across hundreds of two-
feature tests and all three embeddings, (a) the commutator
norm shows a slight, negative correlation with copy number
(r = −0.114, see Fig. 1), (b) accuracy shows virtually no
correlation with copy number (r = 0.042), (c) accuracy has
only a weak positive correlation with non-commutativity (r =
0.174), and (d) the HQC achieves accuracy comparable to that
of classical algorithms (see Fig. 2). These results challenge the
straightforward application of the quantum Chernoff intuition.

II. QUANTUM HELSTROM BINARY CLASSIFIER

A. Quantum Data Embeddings
We map each 2D feature x = (x0, x1) to a quantum state

by first normalizing [3]

u =
x

∥x∥
, ∥x∥ =

√
x20 + x21, (1)

and substituting 1
2I if ∥x∥ falls below a threshold.

1) Amplitude Encoding: Use the real components of u as
amplitudes [3]:

|ψamp⟩ = u0 |0⟩+ u1 |1⟩, ρamp = |ψamp⟩⟨ψamp|. (2)

2) Phase Encoding: Keep |u0| and |u1| but add a phase
ϕ = π u1 [3]:

|ψph⟩ = u0 |0⟩+ eiϕu1 |1⟩, ρph = |ψph⟩⟨ψph|. (3)



3) Angle Encoding: Interpret u as spherical angles [4]:

θ = 2arccos(u0), φ = arg(u0 + i u1), (4)

|ψang⟩ = cos θ2 |0⟩+e
iφ sin θ

2 |1⟩, ρang = |ψang⟩⟨ψang|. (5)

B. Class Density Operators by Simple Averaging

Given a training set {(xi, yi)} with binary labels yi ∈
{0, 1}, one computes for each class the empirical density
matrix [4]

ρ0 =
1

N0

∑
i:yi=0

ρ(xi) , ρ1 =
1

N1

∑
i:yi=1

ρ(xi), (6)

where Nk is the number of samples in class k. This “proto-
type” construction requires no iterative parameter fitting—just
a weighted average of the embedded states.

C. Minimum-Error Measurement (Helstrom POVM)

The goal is to decide between the two class states ρ0 and ρ1
with lowest possible error, assuming equal prior probabilities.
One defines the Helstrom operator ∆ [1], and diagonalizes it
in its eigenbasis. The optimal two-element POVM for binary
discrimination is

∆ = 1
2 (ρ0 − ρ1), E0 =

∑
λi>0

|vi⟩⟨vi| , E1 = I − E0, (7)

where {λi, |vi⟩} are the eigenpairs of ∆. Measuring an un-
known state ρ(x) with this POVM yields outcome 0 (class
0) with probability Tr[ρ(x)E0], and 1 otherwise. This pre-
scription is known to minimize the average error probability
Perr = 1

2

(
1 − ∥∆∥1

)
, where ∥∆∥1 =

∑
i |λi| is the trace

norm of ∆.

D. Multi-Copy Extension

To exploit an exponential convergence of error, one can
prepare n identical copies of each embedded state and form
[2]

ρ⊗n
0 , ρ⊗n

1 , ∆(n) = 1
2

(
ρ⊗n
0 − ρ⊗n

1

)
. (8)

Repeating the POVM construction on the 2n-dimensional
space yields an error probability scaling as P (n)

err ≈ exp(−ξ n),
where ξ > 0 is the quantum Chernoff exponent. The classifi-
cation proceeds by computing Tr[ρ(x)⊗nE

(n)
0 ] ≥ 0.5.

E. Non-Commutativity and Encoding Quality

Because ρ0 and ρ1 need not commute, the Helstrom POVM
can exploit genuinely quantum interference effects. In practice,
one can quantify the degree of non-commutativity by the
Frobenius norm [2] of their commutator∥∥[ρ0, ρ1]∥∥F =

∥∥ρ0 ρ1 − ρ1 ρ0
∥∥
F
. (9)

A small commutator norm indicates nearly
classical (commuting) prototypes—often leading to
limited quantum advantage—whereas larger norms
signal richer quantum discrimination potential.

Figure 2: Maximum (blue) and average (orange) accuracies
for each algorithm.

III. CONCLUSION

Our extensive empirical study reveals that the theoreti-
cal promise of multi-copy Helstrom discrimination—namely,
monotonic accuracy gains with increasing n—does not au-
tomatically materialize on real data. In particular, amplitude
encoding yields no clear benefit beyond the single-copy case,
while phase and angle embeddings produce modest improve-
ments up to a small optimal n before plateauing. The near-zero
correlation between accuracy and copy number (r = 0.042)
and only a weak link to non-commutativity (r = 0.174)
indicate that additional copies can amplify sampling noise
without unlocking proportional quantum advantage unless the
embedding induces sufficiently strong non-commuting class
states. As future work, we plan to further investigate regions
where the class density operators are nearly commuting, and
to implement Helstrom multi-copy classification on an FPGA
to accelerate the diagonalization process, as in [6].
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