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요 약  

 
본 논문은 본 연구에서는 광대역 주파수 대역 내 신호의 존재 유무를 탐지하기 위한 CNN 기반 스펙트럼 센싱 기법을 

제안한다. 제안된 기법은 신호에 대한 사전 정보 없이 인공지능을 통해 다양한 신호 패턴을 학습하고 신호 유무를 

정확하게 판별한다. 제안된 CNN 모델의 성능은 컴퓨터 시뮬레이션을 통해 검증하였으며, 이미지 처리 인공지능 모델인 

YOLO 및 ViT 와 비교 평가하였다. 시뮬레이션 결과, CNN 모델은 -4dB 이상에서 정탐률 100%를 달성하였으며, 타 

모델들에 비해 적은 파라미터 수를 갖는 경량 모델임에도 불구하고 가장 우수한 성능을 보였다. 

 

Ⅰ. 서 론  

오늘날의 군사작전에서는 정보의 확보와 분석 능력이 

전력의 핵심 요소로 작용한다. 특히 적 통신을 은밀히 

탐지하고 분석하는 기술은 전장의 주도권을 결정짓는 

중요한 수단이다. 이에 따라 스텔스 전투기나 

무인항공기(UAV) 등 첨단 군사 플랫폼은 정찰, 감시, 

통신 릴레이, 타격 임무 등을 수행하면서도 노출을 

최소화할 수 있는 기술을 적극 도입하고 있다[1]. 이 중 

통신 기술은 적에게 위치나 작전 의도를 노출시키지 

않으면서 안정적이고 지속적인 데이터 전송을 

가능하게하여 전자전 환경에서 효과적인 수단으로 

평가된다. 특히, 저피탐(Low Probability of Detection, 

LPD) 통신은 주파수 도약(Frequency Hopping), 저전력 

송신 등의 기술을 통해 신호의 존재 자체를 은닉하여 

기존 감청기나 스펙트럼 분석기로는 탐지하기 어렵다. 

따라서, 저피탐 통신 환경에서 효과적인 감청을 위해서는 

신호 분석 이전에 신호의 존재 여부 자체를 안정적으로 

판별할 수 있는 고성능의 광대역 스펙트럼 센싱 기술이 

필요하다. 본 논문에서는 사전 정보 없이 광대역 주파수 

대역 내에서 신호 존재 유무를 판단하는 CNN 기반 

스펙트럼 센싱 기법을 제안한다. 제안 기법은 시간-

주파수 스펙트로그램의 신호 패턴을 학습하여 실시간 

판단을 수행하며, 성능 평가는 YOLO 및 ViT 기반 다른 

인공지능 모델과 비교하여 수행하였다. 실험 결과, CNN 

모델이 가장 높은 정탐 성능을 나타냈다. 

Ⅱ. 제안하는 시스템 모델 

그림 1 은 본 논문에서 제안하는 광대역 주파수 대역 내 

도약 신호의 존재를 탐지하기 위한 딥러닝 기반 수신 

신호 모델의 구조를 보인다. 안테나를 통해 수신된 

아날로그 신호는 ADC(analog to digital converter)를 

통해 디지털 신호로 변환되며, 이후 FFT 크기만큼의 

샘플을 수집한다. FFT 크기가 클수록 한 블록 내에서 더 

넓은 주파수 범위를 표현할 수 있으며, 제안 기법에서는 

256 point FFT 크기를 사용한다. 각 블록에는 해닝 

윈도우를 적용되며, 수집된 샘플은 FFT 를 통해 주파수 

스펙트럼으로 변환한다. 이후 절댓값의 제곱 연산을 통해 

전력 스펙트럼을 계산하고, 이를 시간 축 방향으로 

누적하여 2 차원 행렬 형태의 시간-주파수 

스펙트로그램으로 생성한다. 스펙트로그램의 가로축은 

수신 신호의 관찰 길이를 의미하며, 길어질수록 인식 

지연(latency)이 증가하는 특성을 가진다. 이에 따라 본 

연구에서는 관찰 길이를 128 로 설정하였다. 생성된 

2 차원 스펙트로그램은 인공지능 모델의 입력으로 

사용되며, 모델은 이를 기반으로 신호 존재 유무를 

Busy/Idle 로 판단한다. 

 

그림 1. 제안하는 시스템 모델 

Ⅲ. 신호 탐지 기법 

3.1 제안하는 CNN 모델 

CNN 은 이미지와 같은 2 차원 데이터를 처리하는 데 

특화된 구조로, 공간적 국소성을 고려한 필터를 통해 

입력 데이터의 지역적 패턴을 효과적으로 학습한다. 모델 

구조는 그림 2 에 제시되어 있으며, 총 4 개의 합성곱 

계층과 2 개의 완전 연결 계층으로 구성된다. 각 합성곱 

계층은 64 채널의 5×5 또는 7×7 크기의 필터를 

사용하며, ReLU 활성화 함수, 배치 정규화, 최대 



 

풀링(Max Pooling)이 순차적으로 적용된다. 4 개의 

합성곱 계층을 통해 특징을 추출한 후, 이를 1 차원으로 

변환하고 드롭아웃을 포함한 완전 연결 계층을 통해 

이진 분류를 수행한다. 학습에는 binary cross-

entropy 를 손실 함수로, Nadam 을 최적화기로 

사용하였으며, 학습률은 0.001, 배치 크기는 64, 에포크 

수는 7 로 설정하였다. 

 

그림 2. 제안하는 합성곱 신경망 구조 

3.2 YOLO(You Only Look Once) 모델 

YOLO (You Only Look Once)는 CNN 기반의 실시간 

객체 탐지 알고리즘으로, 입력 이미지를 그리드 단위로 

분할한 후, 각 영역에서 객체의 위치, 존재 확률, 

클래스를 동시에 예측한다. 본 연구에서는 이를 스펙트럼 

센싱에 적용하고자 신호의 존재 유무를 판단하는 이진 

분류 문제로 변환하였으며, 예측 클래스 수를 1 로 

설정해 신호가 존재할 때만 바운딩 박스를 예측하도록 

구성하였다. 따라서 각 그리드 셀은 스펙트로그램 상에서 

신호의 존재 여부만 판단하게 되고, 결과적으로 

busy/idle 상태를 구분하는 이진 분류가 가능해진다.  

3.3 ViT(Vision Image Transformer) 모델 

ViT(Vision Transformer)는 어텐션 기반 트랜스포머 

구조를 컴퓨터 비전 분야에 적용한 모델로, 본 연구에서 

사용한 ViT 의 구조는 그림 3 에 제시되어 있다. 본 

연구에서는 256×128 크기의 스펙트로그램을 32×32 

크기의 고정된 패치로 분할하여 총 32 개의 패치를 

생성하였고, 각 패치는 128 차원으로 임베딩되어 

트랜스포머 인코더의 입력으로 사용된다. 이때 각 패치의 

위치 정보를 반영하기 위해 위치 인코딩(position 

encoding)을 추가하며, 최종 임베딩 시퀀스는 L(Layer 

stack)개의 Self-Attention 기반 인코더 블록을 통해 

처리된다. 인코더 출력은 1 차원 벡터로 변환된 후, 

2 개의 전결합층(MLP Head)을 거쳐 이진 분류를 

수행하며, 출력층에는 시그모이드(Sigmoid) 활성화 

함수를 적용하여 신호의 존재 여부(busy/idle)를 

판단한다. 

 

그림 3. ViT 모델 구조 

Ⅳ. 시뮬레이션 환경 및 결과 

앞 절에서의 인공지능 모델들의 스펙트럼 센싱 성능을 

비교 및 검증하기 위해 컴퓨터 시뮬레이션을 수행하였다. 

학습데이터는 50,000 개, 테스트데이터는 SNR 별 10,000

개씩 생성하여 학습 및 테스트를 진행하였으며. 시뮬레이

션 환경은 OFDM FFT 크기는 256, 대역폭은 1.25MHz, 

샘플링 클럭은 30MHz, 변조방식은 QPSK, 채널 모델은 

AWGN, SNR 범위는 -10~20dB 를 사용했다. 

  
표 1. 모델 네트워크 및 파라미터 

 

Model 

YOLO ViT 
Proposed 

CNN 

Model 
Network 

YOLOv8x 
ViT 

(L 12) 

2D Conv 
64 64 64 64 

Num. of 

Parameters 
68,153,571 10,281,345 638,065 

 

표 1 은 각 모델의 구조 및 파라미터 수를 요약한 것이

다. YOLOv8-x 는 세 모델 중 가장 많은 파라미터를 가

지며, ViT 는 약 1,028 만 개, CNN 은 약 64 만 개로 가

장 적다. 

 

 
그림 4. 모델 별 정탐률 

 

성능 검증은 채널이 busy 일 때 busy 로, idle 일 때 

idle 로 판단한 경우를 의미하는 정탐(True Detection)을 

기준으로 하며, 채널이 idle 임에도 busy 로 판단한 경우

는 오탐(False Alarm)으로 처리한다. 정확한 정탐 성능 

비교를 위해 세 모델의 오탐률을 평균 1.62% 수준으로 

동일하게 설정한 후 실험을 진행하였으며, 그 결과는 그

림 4 에 제시되어 있다. SNR 이 증가함에 따라 세 모델 

모두 정탐률이 향상되는 경향을 보였다. CNN 은 – 4 dB

에서 정탐률 100%에 도달하며 가장 우수한 성능을 보였

고, YOLO 는 – 3 dB 에서 유사한 성능을 나타냈지만 파

라미터 수가 많았다. ViT 는 3 dB 에서 정탐률 100%에 

도달했으나, 상대적으로 낮은 성능은 Transformer 의 

inductive bias 부족으로 인해 제한된 데이터 환경에서의 

학습 효율 저하에 기인한 것으로 해석된다.  

Ⅴ. 결론  

본 연구에서는 광대역 환경에서 신호 존재 유무를 

탐지하기 위한 CNN 기반 스펙트럼 센싱 기법을 

제안하고, 이를 YOLO 및 ViT 모델과 비교하였다. 실험 

결과, 제안된 CNN 모델은 SNR – 4 dB 의 낮은 

환경에서도 정탐률 측면에서 100%로 가장 우수한 

성능을 보였다. 특히, YOLO 대비 약 1/107, ViT 대비 

약 1/16 수준의 파라미터 수로 높은 성능을 유지해 모델 

경량화 측면에서도 효율성을 입증하였다. 향후에는 신호 

존재 유무뿐 아니라 존재 시간과 주파수 위치까지 

탐지하는 방향으로 확장이 가능할 것으로 기대된다. 
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