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요 약  

 
본 논문은 양자 오류 완화 기법 중 정교환 노이즈 채널 모델링이 가능할 때 이상적인 기댓값을 얻을 수 있는 

Probabilistic Error Cancellation 기법을 소개한다. 또한 전체 density matrix 를 구할 필요 없이 quantum fidelity, 

entanglement entropy, local observable 에 대한 기댓값 등의 원하는 특징들만 구하여 complexity 를 효율적으로 

감소시키는 Classical shadow 를 적용한다. Classical shadow 를 이용하면 𝑀개의 특징을 log 𝑀번의 측정으로 구할 수 있어 

다양한 종류의 observable 관측이 필요한 양자 화학 분야에서 유용한 측정 기법이다. 또한 PEC 기법과 classical 

shadow 기법을 결합하여 오류가 완화된 classical shadow 의 성능을 확인한다. 

 

 

Ⅰ. 서 론  

양자 컴퓨터는 특정 계산 문제를 고전적인 방법보다 

훨씬 효율적으로 해결할 수 있는 잠재력을 갖고 있어 

많은 주목을 받고 있다. 그러나 현재의 양자 하드웨어는 

다양한 종류의 노이즈와 결맞음 손실(decoherence)에 

취약하여, 계산의 정확성과 신뢰성에 큰 제약이 따른다. 

이러한 문제를 극복하기 위한 방법으로 양자 오류 

정정(Quantum Error Correction, QEC)이 개발되어 왔다. 

QEC 는 여러 개의 물리적 큐비트를 사용하여 논리적 

큐비트를 구성하고, 오류를 탐지 및 수정하는 부호를 

통해 오류의 영향을 줄이려 한다. 하지만 QEC 는 많은 

수의 보조 큐비트와 복잡한 연산을 요구하기 때문에, 

현재의 NISQ(Noisy Intermediate-Scale Quantum) 

환경에서 구현이 어렵고 비효율적이다. QEC 의 실용적 

대안으로 양자 오류 완화(Quantum Error Mitigation, 

QEM) 기법들이 제안되고 있으며, 추가적인 큐비트 

없이도 측정 기댓값을 개선하는 방향으로 연구가 활발히 

진행되고 있다 [1-3]. 

양자 오류 완화 기법은 오류를 직접적으로 

교정하기보다, 이상적인 기댓값을 얻는 것을 목표로 한다. 

양자 오류 완화 기법엔 Zero Noise Extrapolation(ZNE), 

Probabilistic Error Cancellation(PEC), Symmetry 

Verification(SV) 등이 존재하며 ZNE 기법은 추가적인 

큐비트가 필요 없고, 오류 완화된 기댓값을 추정하기 

위해 구현해야 하는 회로가 간단하다. PEC 기법은 회로의 

에러 확률에 따라 overhead 가 크게 증가하지만 정확한 

노이즈 모델링이 가능하다면 이상적인 회로의 기댓값을 

얻을 수 있다는 장점이 있어 활발히 연구가 진행되고 

있다[4]. 본 논문에서는 PEC 의 구현방법과 PEC 와 

classical shadow 를 결합하였을 때의 성능을 분석한다. 

Ⅱ. 본론  

A. Probabilistic Error Cancellation 

PEC 기법의 핵심은 이상적인 회로를 노이즈가 있는 

회로의 quasi probability 조합으로 나타내는 것이다. 

노이즈가 있는 물리적 게이트를 𝒢𝑘 라고 하면 이상적인 

게이트의 채널은 다음과 같이 나타낸다. 

𝒰 = ∑ 𝛾𝑘𝒢𝑘
𝑘

(1) 

이 때 𝛾𝑘 는 1 보다 크거나 음의 값을 가질 수 있다. 

따라서 실제 하드웨어에서 회로 구현을 위해서 정규화가 

필요하다. 이상적인 양자 상태를 𝜌𝑖𝑑 ≔ 𝒰𝑐𝑖𝑟𝑐|0⟩⟨0|이라고 

하고, 𝒰𝑐𝑖𝑟𝑐 = 𝒰𝑣° ⋯ °𝒰2°𝒰1 은 다음과 같이 𝑣 개의 

게이트로 이루어진다. 따라서 노이즈가 있는 전체 회로는 

다음과 같이 나타낼 수 있다. 

𝒰𝑐𝑖𝑟𝑐 = ∑ 𝑔𝑘𝒢𝑘
𝑘

(2) 

각 게이트는 확률 분포 𝑝(𝑘): = |𝑔𝑘|/‖𝑔‖1 에 따라 

구성되고 회로 전체의 overhead ‖𝑔‖1 은 각 

게이트에서의 overhead 의 곱으로 이루어진다. 이 때 

observable 𝑂  에 대한 이상적인 기댓값은 

𝑇𝑟[𝑂𝒰𝑐𝑖𝑟𝑐 |0⟩⟨0|]이고, 이는 아래의 기댓값을 확률 𝑝(𝑘)에 

따라 샘플링하여 얻을 수 있다. 

𝑠𝑖𝑔𝑛(𝑔𝑘)𝑇𝑟[𝑂𝒢𝑘|0⟩⟨0|] (3) 

실제로 예를 들어서 어떠한 유니터리 게이트가 다음의 

Pauli noise 를 가질 때, 

𝛬(𝜌) = 𝑝𝐼𝐼𝜌𝐼 + 𝑝𝑋𝑋𝜌𝑋 + 𝑝𝑌𝑌𝜌𝑌 + 𝑝𝑍𝑍𝜌𝑍 (4) 

 



역채널은 다음과 같다. 

𝛬−1(𝜌) = 𝑞𝐼𝐼𝜌𝐼 + 𝑞𝑋𝑋𝜌𝑋 + 𝑞𝑌𝑌𝜌𝑌 + 𝑞𝑍𝑍𝜌𝑍 (5) 

  

 

그림 1. (a) 오류 완화하고자 하는 회로 (b) 게이트의 

노이즈 채널이 Pauli noise 채널이라면 그림과 같이 

오류를 상쇄하기 위해 4 가지 회로가 구성됨 

식(4)와 같은 노이즈 채널은 이미 연구된 Pauli 

twirling 기법을 이용하여 실제 하드웨어의 복잡한 채널을 

Pauli noise 로 간소화할 수 있다. 오류의 영향을 

상쇄하기 위해 노이즈 역채널의 weight에 따라 그림 1과 

같이 recovery gate 추가가 필요하다. 이 때 recovery 

gate 가 추가될 때 노이즈가 상쇄되는 경우의 확률의 

합이 1 이되고, 노이즈가 상쇄되지 않거나 오히려 

recovery gate 에 의해 추가되는 경우의 확률의 합은 

0 이 되도록 계산을 하여 식(5) 노이즈 역채널의 

weight 를 구할 수 있다. 계산한 weight 를 바탕으로 

recovery gate 를 추가하고, recovery gate, state 

preparation and measurement 에러가 발생하지 

않는다고 가정하면 이론적으로 이상적인 회로에 대한 

기댓값을 구할 수 있다. 그림 1 과 같은 회로에서는 

게이트에서 오류가 발생하지 않거나 Pauli 에러가 

발생하는 경우 4 가지, recovery gate 에서 Pauli I, X, Y, 

Z 연산을 추가하는 경우 4 가지로 총 16 가지 경우의 

회로가 수행되고 노이즈, recovery gate 모두 Pauli I, X, 

Y, Z gate 가 발생하는 경우의 확률의 합이 1 이 되도록 

weight 를 계산하여 이상적인 회로일 때의 기댓값을 

추정할 수 있다. 

B. PEC with Classical Shadow 

 Classical shadow 기법은 기존의 quantum state 

tomography같은 측정기법의 큐비트 수가 증가함에 따라 

측정 수가 지수적으로 증가하는 단점을 보완하기 위해 

제안된 기법으로 state tomography 처럼 전체 density 

matrix 를 구하는 것이 목적이 아니라, quantum fidelity, 

entanglement entropy, local observable 에 대한 기댓값 

같이 구하고자 하는 𝑀개의특징을 log(𝑀)번의 측정으로 

구할 수 있다[5]. Classical shadow 를 적용하기 위해 

임의의 유니터리 게이트를 추가하게 되는데 본 논문에선 

편의를 위해 Clifford group 중 Pauli basis 에서 측정을 

하기 위한 I, H, SH gate 를 이용한다. 이후 측정 결과가 

𝑏 ∈ {0,1}𝑁과 같이 bit string 으로 나오면 index j 와 함께 

고전적으로 저장하여 positive operator 𝐸𝑙 =

𝑝𝑗𝑄𝑗
†|𝑏⟩⟨𝑏|𝑄𝑗 , snapshot 𝜌̂𝑙 = 𝐶𝐸

−1(𝐸𝑙) 을 형성한다. 본 

논문에선 특정한 Pauli basis 에서 측정하는 경우의 

snapshot 은 다음과 같이 나타낼 수 있다. 

𝜌̂𝑙 = ⨂(3𝑈𝑗
†|𝑏𝑗⟩⟨𝑏𝑗|𝑈𝑗 − 𝐼)

𝑛

𝑗=1

(6) 

다양한 유니터리 게이트에 대한 snapshot 이 모여서 

classical shadow 를 형성하게 되고, 각 경우에 대한 

기댓값의 평균은 구하고자 하는 회로에 대한 기댓값과 

같다. Snapshot 을 이용한 기댓값은 다음과 같은데 ⟨𝑂⟩ =

E[Tr(𝑂𝜌̂)]  이 때 observable 만 수식적으로 바꿔주면 

다른 observable 에 대한 기댓값도 추가적인 측정 없이 

구할 수 있어 다양한 observable 에 대한 기댓값 측정이 

필요할 때 효율적이다. 구하고자 하는 PEC 와 classical 

shadow 가 결합된 기댓값은 Pauli basis 에서 측정하도록 

임의의 유니터리 게이트를 적용하는 경우 다음과 같다.  

𝜌̂𝑖𝑑 = ‖𝑔‖1𝑠𝑖𝑔𝑛(𝑔𝑘) (⨂(3𝑈𝑗
†|𝑏𝑗⟩⟨𝑏𝑗|𝑈𝑗 − 𝐼)

𝑛

𝑗=1

) (7) 

Ⅲ. 결론   

 본 논문에서 소개한 PEC 기법은 노이즈 채널을 정확히 

모델링하면 이상적인 회로의 기댓값과 동일한 값을 얻을 

수 있다는 장점이 있고, classical shadow 기법과 

결합하면 다양한 observable 에 대한 측정도 

효율적이지만 PEC 기법 자체의 overhead 와 classical 

shadow 과정에서 임의의 유니터리 게이트를 추가해야 

한다. 실제 양자 하드웨어에선 회로의 depth 가 증가함에 

따라 누적되는 노이즈도 많아지는데 이를 해결한다면 

정확한 기댓값을 얻을 수 있을 것으로 기대된다. 
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