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Abstract—This paper presents a novel integration of Quantum
Optics and Vision-Language Models (VLMs) to address chal-
lenges in Quantum State Tomography (QST). Quantum systems,
inherently characterized by superposition and entanglement,
pose significant difficulties in direct state measurement and
reconstruction. To overcome these challenges, we propose a
Quantum Optical Vision Language Model (QOVLM), leveraging
the Qwen2.5-VL architecture, fine-tuned on quantum optical
state datasets. The model employs visual analysis of Wigner
functions and quantum images to classify and infer photon states,
qubit counts, and coherence properties via chain-of-thought
prompting. Evaluation demonstrates the model’s capability to
identify quantum states (e.g., Fock, cat, coherent, thermal)
with visual reasoning, offering a new paradigm in quantum
information processing using VLM.

Index Terms—vision language model, quantum state tomogra-
phy, qubit, quantum states

I. INTRODUCTION

Large language models (LLMs) and vision-language models
(VLMs) have recently achieved impressive breakthroughs,
powered by transformer-based architectures and large-scale
datasets. LLMs demonstrate strong performance in under-
standing, generating, and reasoning over natural language,
while VLMs combine textual and visual modalities to enable
tasks like image captioning and recognition. Researchers have
begun leveraging the reasoning power of VLMs for quantum
many-body problems and derivations; for instance, Pan et al.
showed that GPT-4 could reproduce Hartree-Fock equations
with high accuracy when guided by expert prompts [1].
In parallel, machine learning is being applied to Quantum
State Tomography (QST), a traditionally resource-intensive
process. Ahmed et al. demonstrated that convolutional neural
networks can reconstruct optical quantum states even under
noise and data scarcity, and subsequent work extended this
with generative models embedding physical constraints for
better fidelity [2].

Beyond QST, the integration of LLMs into quantum algo-
rithm development and simulation is accelerating. Zhou et al.
trained a transformer model to simulate 2–3 qubit circuits
with minimal error, drastically reducing computational cost
[3]. Specialized LLMs like GroverGPT further exemplify this
trend—Wang et al.’s model achieved over 95% accuracy for
quantum search problems with up to 20 qubits, outperforming
GPT-4 [4]. Nakaji et al. proposed a GPT-based generative
quantum eigensolver capable of autonomously designing quan-
tum circuits for ground-state preparation [5]. Beyond these,
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machine learning has also been applied to other quantum tasks
such as generative AI integration [6], beam sensing [7], and
entanglement detection [8]. These works highlight how large-
scale deep learning models can emulate quantum behavior and
aid discovery. This paper builds upon this momentum by ap-
plying LLMs and VLMs—specifically, a fine-tuned Qwen2.5-
VL model—to QST tasks using a novel Quantum Optical
Dataset. The dataset includes visual Wigner function repre-
sentations of cat, fock, coherent, and thermal states, annotated
with parameters like photon count and alpha. Through chain-
of-thought prompting and multimodal reasoning, the model
classifies states, estimates quantum parameters, and learns
qubit numbers.

II. METHODS

A. Dataset Construction

We generated our dataset using the open-source quantum
computing library, QuTiP. For each quantum state, we varied
parameters such as the number of qubits (ranging from 1
to 30), displacement amplitude (α), photon number, density,
and line space resolution. Each configuration produced an



TABLE I
EVALUATION OF QWEN2.5VL BASE VS FINE-TUNED MODEL

Metric Qwen2.5VL
Base

Qwen2.5VL
FT

Similarity Scores
BERT(F1) Mean Score 0.9586 0.9680
BERT Mean Precision 0.9558 0.9696
BERT Mean Recall 0.9615 0.9664
BLEU1 Score 0.0088 0.0327

Error Metrics
CER Score 1.2266 0.6106
MER Score 0.8771 0.7338
WER Score 1.5692 0.7502

Task Accuracy
State classification 34.71% 94.01%
Parameter (α, density,
photon)

16.67% 89.41%

Number of qubits 0.18% 99.26%
Linear space calculation 34.62% 65.75%
All correct 0.00% 54.33%

image with the corresponding quantum state’s 2-dimensional
and 3-dimensional Wigner function. These images were saved
alongside metadata indicating the ground-truth state type (e.g.,
coherent, cat, Fock, thermal, random), qubit count, and specific
parameters used in the simulation. Our objective is to perform
reverse inference: predicting these original parameters solely
from the visual representation using a vision-language model.

The Wigner function W (q, p) is a quasiprobability distri-
bution that provides a full description of the quantum state
in phase space. For a quantum system described by a density
operator ρ̂, the Wigner function is defined as:

W (q, p) =
1

πℏ

∫ ∞

−∞
dy ⟨q − y|ρ̂|q + y⟩e2ipy/ℏ, (1)

which for a pure state ψ reduces to:

W (q, p) =
1

πℏ

∫ ∞

−∞
dy ψ∗(q + y)ψ(q − y) e2ipy/ℏ. (2)

This function maps the quantum state into a two-dimensional
phase space using the position q and momentum p coordinates,
and can take on negative values, reflecting the non-classical
features of quantum systems.

B. Model Architecture

We adopt Qwen2.5-VL as the backbone of our system. In
particular, we leverage Qwen2.5-VL’s vision encoder, which
incorporates 2D rotary positional embeddings to capture spa-
tial dependencies in visual data. This feature is critical for un-
derstanding Wigner function structures and spatial coherence
patterns that distinguish quantum states. Given our dataset
includes both 2D and pseudo-3D visualizations, we aim to
evaluate the model’s ability to generalize over diverse image
encodings of quantum information. The whole architecture can
be seen in Figure 1.

C. Fine-tuning Strategy

To adapt the pre-trained Qwen2.5-VL to the quantum do-
main, we fine-tune it on our custom dataset using parameter-
efficient fine-tuning (PEFT) techniques. Specifically, we use
LoRA parameter fine tuning. Training is conducted with a con-
servative learning rate of 0.1 to ensure stability, albeit requiring
more epochs for convergence. We train the model over four
epochs, monitoring accuracy and generalization performance
across different quantum state types. PEFT layers are applied
to the vision encoder and projection layers to minimize the
number of trainable parameters while maximizing domain-
specific adaptability.

III. RESULTS

Incorporating chain-of-thought prompting into the
Qwen2.5-VL fine-tuning pipeline yields a pronounced
uplift in both semantic reconstruction and discrete state
classification. As detailed in Table 1, the fine-tuned model
not only boosts its BERT-based F1 score and quadruples its
BLEU-1 score, but it also slashes transcription error rates.
Most critically for quantum state reconstruction, classification
accuracy soars from 34.7 % to 94.0 %, parameter estimation
(α, photon density) jumps from 16.7 % to 89.4 % qubit-
count prediction from 0.18 % to 99.3 %, and linear-space
calculation correctness from 34.6 % to 65.8 % resulting in
fully correct end-to-end outputs in 54.3 % of cases versus 0
% previously. These gains demonstrate that explicitly guiding
the model through intermediate reasoning steps dramatically
improves its ability to parse complex visual-quantum inputs
and reconstruct underlying physical parameters.

IV. CONCLUSION

This study demonstrates the potential of Vision-Language
Models (VLMs) in analyzing Wigner function representa-
tions for quantum state classification and parameter recon-
struction. Leveraging the Qwen2.5-VL vision encoder, the
model successfully identifies key quantum state types and
estimates associated parameters directly from visual input.
While the results indicate promising capabilities, the current
parameter classification accuracy remains below the threshold
required for high-confidence applications. To address this,
future work should explore hybrid architectures that combine
VLM with specialized deep neural networks, enhancing both
interpretability and precision. Additionally, scaling the vision-
language model to larger parameter sizes may improve per-
formance across diverse quantum configurations.
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