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Abstract—In this paper, we study a quantum reservoir learning
(QRL) architecture based on a lattice of Rydberg atoms for the
classification of handwritten digits from the MNIST dataset. Each
image is first reduced to a 10-dimensional representation via
principal component analysis (PCA), then encoded into the initial
state of a reservoir comprising neutral atoms evolving under
a fixed Rydberg Hamiltonian. Classical observables sampled
from the reservoir’s quantum state furnish high-dimensional
feature embeddings, which are subsequently processed by simple
linear or nonlinear classifiers. Our empirical evaluation reveals
a 36% reduction in mean-squared error relative to PCA-only
baselines. By eliminating gradient-based training and leveraging
the intrinsic dynamics of the Rydberg system, this scheme not
only simplifies implementation but also demonstrates inherent
resilience to NISQ era. These results establish Rydberg reservoirs
as efficient, high-expressivity feature mappers for scalable, noise-
robust quantum learning.

I. INTRODUCTION

Quantum Machine Learning (QML) techniques such as vari-
ational quantum circuits (VQCs) and quantum kernels promise
expressive representations, yet they remain constrained by
barren plateaus, kernel concentration effects, and sensitivity
to NISQ-era noise. These issues limit generalization and
scalability on near-term devices [1].

Quantum Reservoir Computing (QRC) addresses these
limitations by leveraging untrained quantum dynamics gov-
erned by a fixed Hamiltonian to produce nonlinear, high-
dimensional temporal embeddings. Unlike VQCs, QRC re-
quires no gradient-based optimization, and unlike kernel meth-
ods, it captures temporal structure without computing pairwise
overlaps, making it more resilient to circuit depth and mea-
surement noise [2], [3].

In this work, we propose a Rydberg atom-based QRC
framework for classification. Handwritten digit images are
compressed via principal component analysis (PCA) to 10
dimensions, then encoded into the initial quantum state of a
Rydberg reservoir. As the system evolves, task-relevant ob-
servables are sampled to construct expressive quantum embed-
dings for downstream classification. This hybrid architecture
demonstrates strong performance on MNIST while preserving
implementation simplicity and noise robustness, establishing
QRC as a scalable alternative for quantum-enhanced learning.

II. METHODOLOGY

A. Quantum Reservoir Framework

Quantum Reservoir Learning (QRL) uses the dynamics of a
fixed, untrained quantum system to encode classical inputs into
expressive temporal embeddings. All trainable parameters are

confined to a classical readout layer, avoiding gradient-based
optimization in the quantum model.

In our setup, 10-dimensional feature vectors extracted via
PCA from MNIST images are encoded into a quantum reser-
voir composed of N neutral Rydberg atoms. The system
evolves under a time-dependent Hamiltonian:

H(t) - HO + Hint + Hdrive(t)a (1)

where Hj is the on-site energy, Hj,, encodes van der Waals
interactions, and Hgyive(t) embeds input data via modulated
detunings [3].

B. Rydberg Encoding and Quantum Evolution

We adopt a Constant Detuning (CD) scheme to map features
x = (x1,...,xzy) onto qubit frequencies. The reservoir
evolves under:
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where n; = (1 — 07) and V;; captures inter-atomic interac-
tions. Detunings A; are linearly scaled:

Tij — Tmi
Ai - Amin + 17M(Amax - Amin)- (3)
Tmax — Lmin
The quantum state |¢(t)) evolves via the Schrodinger equa-
tion:
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and is numerically integrated over time to capture the system’s
dynamics and produce time-dependent quantum states [4].

C. Measurement and Embedding Construction

At M + 1 discrete times tj, over [to, tx], we measure local
and pairwise Pauli observables:

O={X,Y;, ZYU{PP; | P {X,Y,Z},i<j}. (5

Each time step yields an embedding vector E®*) ¢
9N(N-1)
R3N*7"2 . The full embedding is:

(M+1)x(3N+w)

By e R (6)

These embeddings serve as input to simple linear or non-
linear classifiers, enabling downstream digit classification
without training the quantum model [5].
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Fig. 1. QRC achieves a 36% reduction in mean squared error over PCA-only baselines, with the best performance observed at N = 6 atoms and 6-class

digit classification.

III. SIMULATION AND RESULTS

We evaluated the proposed Rydberg-based QRC framework
on MNIST digits, each reduced to a 10-dimensional vector
via PCA. These vectors are encoded into the initial quantum
state of a reservoir comprising N = 4 to N = 10 Rydberg
atoms. The system evolves under a fixed Hamiltonian over a
time window of 0 us to 3 us in 0.5 us steps.

At each time step, single- and two-qubit Pauli observables
are sampled to construct temporal embeddings that capture the
reservoir’s evolving quantum correlations. These embeddings
are processed by a classical gradient boosting model for
downstream digit classification.

At N = 6 and six digit classes, the QRC model achieves
a 36% reduction in mean squared error relative to PCA-only
baselines. These results confirm the framework’s effectiveness
as a gradient-free, noise-resilient approach for scalable quan-
tum learning with untrained dynamics.

TABLE I
RYDBERG RESERVOIR PARAMETERS

Parameter ~ Value Description

d 10 pm Spacing between atoms
Niites 4 Atoms in the chain

Q 27 Rabi frequency

tstart 0.0 s Start time for the evolution
tend 3.0 us End time for the evolution
tstep 0.5 pus Time step for the evolution
trate 1.0 Measurement rate per step
a a; ~U(0,1) Site-specific modulation

\%4 Symmetric, V;; =  Interaction matrix capturing

0.1, V3; ~U(0,1) pairwise interactions.

IV. CONCLUSION

This work demonstrates the effectiveness of Rydberg-based
Quantum Reservoir Computing for scalable and noise-resilient
feature embedding in classification tasks. By encoding PCA-
reduced inputs into a fixed Rydberg Hamiltonian and sampling

quantum observables over time, the proposed framework gen-
erates expressive embeddings without circuit training or varia-
tional optimization. Applied to MNIST digit classification, our
model achieves significant improvement over classical base-
lines, validating QRC’s utility under limited data and hardware
constraints. The results underscore the potential of quantum
reservoirs as efficient, high-expressivity mappers for near-term
quantum learning. Future directions include evaluating QRC
on more complex datasets, investigating adaptive encoding
strategies, exploring implementation on real quantum hard-
ware, and integrating with variational and privacy-preserving
quantum sensing frameworks [6].
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