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Abstract

We present a PPO-based reinforcement learning approach to solve the vast combinatorial optimization challenge of RIS pattern,

efficiently navigating the binary configuration space to achieve precise directional control in near-field
environments.

I. Introduction

Reconfigurable Intelligent Surfaces (RIS) have emerged as a key
technology for next-generation wireless communications by
controlling electromagnetic wave propagation with minimal power
The critical in RIS optimization is

consumption. challenge

determining the optimal configuration from 2N2possibilities for an
NXN array, creating a search space intractable for traditional
methods when applied to practical arrays like 16X16 elements. We
address this challenge with a Proximal Policy Optimization (PPO)
framework that combines a dual-paradigm exploration strategy, a
composite reward function with MSE and contrast metrics, and a
CNN-based policy network for hierarchical feature extraction.
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Experimental results demonstrate  superior

performance compared to conventional approaches,

significant  implications for practical

next-generation communication systems.

II. Method
A. RIS System Configuration and Near-field Modeling
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Fig 1. RIS hardware & nearfield beam pattern

Our prior work has implemented a 32x32 1-bit unit cell RIS
operating at 26.5-29.5 GHz. The beamforming algorithm employs

a codebook approach with 1,024 predefined beam directions in the
U-V domain, incorporating near—field considerations including
distance variations and spherical wavefront curvature effects.[1]
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For near-field modeling, we define r as the reference distance
from RIS center to receiver, P as the RIS element position vector,
and u as the direction vector. The phase difference calculation
incorporates the spherical wavefront curvature effect, which we

approximate using Taylor series expansion:
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To validate our PPO-based reinforcement learning framework, we

conducted experiments using a 16X16 RIS tile array with binary

states (0/1), creating a vast 2256 configuration space. The target
radiation pattern aimed to optimize beamforming toward a specific
near-field direction (r=0.05m, azimuth=92.9°, elevation=55.16°).

B. Reinforcement Learning Architecture

The proposed RIS pattern optimization architecture integrates
various components to enable end-to—end learning. The RIS
pattern is represented as an NXN binary matrix, with N=16 in this
experiment. The radiation pattern simulation function R takes the
binary pattern P as input and outputs a 2D radiation pattern.
Specifically, M=91, and the radiation pattern is represented on a
91x91 grid in dB.

F=R(P)eRMM
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Fig 2. PPO-based RIS-pattern Optimization Framework

The environment evaluates radiation patterns from binary
configurations and provides performance-based rewards to the

agent.

s, = [F;,th'get]eRZXMxM , SZES
The state space(S) comprises two normalized 91x91 dB-scale
radiation patterns (current and target pattern) as a two-channel
input, enabling direct pattern comparison. This design enables the
agent to compare the current and target patterns, facilitating

efficient learning.
A={0.1}Y g 0.1}V
The action space(A) features two modes: "one-shot" (setting all
256 elements simultaneously) and "budgeted-flip" (sequentially
flipping individual elements with optional termination), enabling
flexible optimization approaches.
A={1,2,.. N>, N*+1}, a,€ {1,...N*, N*+ 1 = stop
The transition function(T) defines the state update rule given the
current state and selected action:
Fp = R(P ) s = F 0
The state(s,, ;) observation combines current and target radiation
patterns for direct comparison. The reward function outputs a
scalar value based on weighted performance metrics, primarily

using MSE between current and target patterns.
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The reward function combines target intensity rewards with
contrast metrics to differentiate focal and background areas. Our
PPO implementation uses advantage estimation and objective
clipping for stability, with a temperature parameter(z,) controlling
the exploration—exploitation balance during training.

a CNN encoder that

downsamples the 91X91X2 input (current and target patterns(s,))

The Actor-Critic network employs

to extract a 384-dimensional(d) feature vector(z,).
5= f, (s) eR’

The Actor network transforms the feature vector into a categorical

distribution over 257 actions (256 element positions plus one stop
action) through multiple MLP layers( f Hﬂ), while the Critic network

estimates expected future rewards from the same features. This

shared-encoder design enables efficient processing of
high-dimensional radiation patterns while maintaining stable policy
learning.
, l
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II. Conclusion
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Fig 3. Performance Metric During Reinforcement Learning

Our budgeted-flip approach demonstrated remarkable learning
progression from initial low rewards to significant improvement
around episodes 200-300, with convergence and early termination
MSE

decreased from above 2060 to 1930.27, while power contrast

at episode 1,481. Key metrics improved consistently:

reached 12.95dB, confirming efficient convergence within the vast
RIS configuration space.

Fig 4. Optimized Binary Pattern and Its Radiation Pattern

Fig. 4
reinforcement learning and its resulting radiation pattern. The

shows the optimal binary pattern derived through
simulation shows a directional beam precisely at the target
position, with concentrated main lobe energy and minimal

sidelobes. These results confirm our PPO-based approach

effectively navigates the vast 2256 configuration space to achieve
precise beamforming in challenging near—field conditions.
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