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Abstract
 We present a PPO-based reinforcement learning approach to solve the vast combinatorial optimization challenge of RIS pattern, 

efficiently navigating the binary configuration space to achieve precise directional control in near-field 

environments.

Ⅰ. Introduction

 Reconfigurable Intelligent Surfaces (RIS) have emerged as a key 

technology for next-generation wireless communications by 

controlling electromagnetic wave propagation with minimal power 

consumption. The critical challenge in RIS optimization is 

determining the optimal configuration from  
possibilities for an 

N×N array, creating a search space intractable for traditional 

methods when applied to practical arrays like 16×16 elements. We 

address this challenge with a Proximal Policy Optimization (PPO) 

framework that combines a dual-paradigm exploration strategy, a 

composite reward function with MSE and contrast metrics, and a 

CNN-based policy network for hierarchical feature extraction. 

Experimental results demonstrate superior beamforming 

performance compared to conventional approaches, with 

significant implications for practical RIS deployment in 

next-generation communication systems.

Ⅱ. Method

  A. RIS System Configuration and Near-field Modeling

 

 Fig 1. RIS hardware & nearfield beam pattern

  Our prior work has implemented a 32×32 1-bit unit cell RIS 

operating at 26.5–29.5 GHz. The beamforming algorithm employs 

a codebook approach with 1,024 predefined beam directions in the 

U-V domain, incorporating near-field considerations including 

distance variations and spherical wavefront curvature effects.[1]

  ​  exp−−⋅​
For near-field modeling, we define r as the reference distance 

from RIS center to receiver, P as the RIS element position vector, 

and u as the direction vector. The phase difference calculation 

incorporates the spherical wavefront curvature effect, which we 

approximate using Taylor series expansion:

 ⋅ ⋅, where   ⋅


To validate our PPO-based reinforcement learning framework, we 

conducted experiments using a 16×16 RIS tile array with binary 

states (0/1), creating a vast   configuration space. The target 

radiation pattern aimed to optimize beamforming toward a specific 

near-field direction (r=0.05m, azimuth=92.9°, elevation=55.16°).

  B. Reinforcement Learning Architecture

The proposed RIS pattern optimization architecture integrates 

various components to enable end-to-end learning. The RIS 

pattern is represented as an N×N binary matrix, with N=16 in this 

experiment. The radiation pattern simulation function R takes the 

binary pattern P as input and outputs a 2D radiation pattern. 

Specifically, M=91, and the radiation pattern is represented on a 

91×91 grid in dB.

 ∈×



 Fig 2. PPO-based RIS-pattern Optimization Framework

The environment evaluates radiation patterns from binary 

configurations and provides performance-based rewards to the 

agent.

​  ​ ∈ ××   , ​∈  

The state space(S) comprises two normalized 91×91 dB-scale 

radiation patterns (current and target pattern) as a two-channel 

input, enabling direct pattern comparison. This design enables the 

agent to compare the current and target patterns, facilitating 

efficient learning.

    
 , ​∈ 

 The action space(A) features two modes: "one-shot" (setting all 

256 elements simultaneously) and "budgeted-flip" (sequentially 

flipping individual elements with optional termination), enabling 

flexible optimization approaches.

   , ∈   
 The transition function(T) defines the state update rule given the 

current state and selected action: ​   ​   ,  ​   ​ 
The state(  ) observation combines current and target radiation 

patterns for direct comparison. The reward function outputs a 

scalar value based on weighted performance metrics, primarily 

using MSE between current and target patterns.

        ​ − 
The reward function combines target intensity rewards with 

contrast metrics to differentiate focal and background areas. Our 

PPO implementation uses advantage estimation and objective 

clipping for stability, with a temperature parameter() controlling 

the exploration-exploitation balance during training.

The Actor-Critic network employs a CNN encoder that 

downsamples the 91×91×2 input (current and target patterns()) 
to extract a 384-dimensional(d) feature vector(). ​  ​​ ​∈ 
The Actor network transforms the feature vector into a categorical 

distribution over 257 actions (256 element positions plus one stop 

action) through multiple MLP layers(  ​​), while the Critic network 

estimates expected future rewards from the same features. This 

shared-encoder design enables efficient processing of 

high-dimensional radiation patterns while maintaining stable policy 

learning.

 ​   ​​  ​ ∈  , ​​ ​∣ ​    ​​​ 
Ⅲ. Conclusion

 Fig 3. Performance Metric During Reinforcement Learning 

Our budgeted-flip approach demonstrated remarkable learning 

progression from initial low rewards to significant improvement 

around episodes 200-300, with convergence and early termination 

at episode 1,481. Key metrics improved consistently: MSE 

decreased from above 2060 to 1930.27, while power contrast 

reached 12.95dB, confirming efficient convergence within the vast 

RIS configuration space.

Fig 4. Optimized Binary Pattern and Its Radiation Pattern

Fig. 4 shows the optimal binary pattern derived through 

reinforcement learning and its resulting radiation pattern. The 

simulation shows a directional beam precisely at the target 

position, with concentrated main lobe energy and minimal 

sidelobes. These results confirm our PPO-based approach 

effectively navigates the vast   configuration space to achieve 

precise beamforming in challenging near-field conditions.
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