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요 약

본 논문에서는 신경망의 적대적 강건성 강화를 위해 오류 정정 출력 부호(Error Correcting Output Codes: ECOCs)와 변분 정보 병목(Variational
Information Bottleneck: VIB)을 결합한 ECOC-VIB 모델을 제안한다. 이전 연구 [1]에서 채널 잡음과 적대적 예제의 유사성에 착안해 ECOCs를 심층
신경망(Deep Neural Networks: DNNs)에 적용함으로써 최첨단 수준의 적대적 강건성을 달성한 바 있다. 본 연구의 핵심은 이에 VIB를 결합하여
ECOCs 앙상블의 잠재 벡터 분포를 정규 분포에 가깝게 압축함으로써 적대적 강건성을 개선하는 것이다. 그 결과, MNIST 데이터셋에서 적대적 훈련
(Adversarial Training: AT) [2] 모델 대비 1/14 수준의 모델 용량만으로 약 4% 높은 적대적 정확도를 달성하였다.

Ⅰ. 서 론

심층 신경망(Deep Neural Networks: DNNs)은 다양한 분야에서 최첨

단 수준의 성능을 입증하고 있으나, 여러 연구에서 적대적 예제에 취약하

다는 문제점이 지적되고 있다 [3, 4]. 적대적 예제란 원본 입력에 작고 정

교하게설계된 교란을추가하여모델이오분류하도록 유도한데이터를말

한다. 이러한 취약성은 모델이 실제 환경에서 신뢰성을 유지하는데 중대

한위협이된다. 이를 해결하기위해적대적예제탐지및 적대적 학습 [2]

과 같은 다양한 접근법이 제안되었으나, 현재까지 적대적 학습 기법만이

일반적인 공격에대해 실질적인방어 능력이 있는 것으로 확인되었다 [5].

적대적 학습기법의뛰어난적대적강건성에도불구하고한계는명확하

다. 훈련 단계에서적대적예제를반복생성해야하는계산복잡도와원본

정확도와적대적 정확도사이의 trade-off가 존재한다. 적대적예제를 생성

하는과정은이미지크기에영향을받으며, 적대적정확도향상은원본정

확도의 하락을 초래한다.

이러한 한계를 극복하기 위해, 부호 이론에서 영감을 받은 ECOCs [6]

를 도입하기위한시도가있었으며, 최근 연구들은 ECOCs를 활용하여최

첨단수준의강건성을달성하였다 [1]. 정보와 레이블간의유사성, 그리고

잡음채널과적대적교란 간의 유사성은 적대적 학습 분야에서 ECOCs를

적용하게 된 동기가 되었다. ECOCs는 다중 분류 문제를 간단한 이진 분

류문제로 분해하여해결하는기법으로신경망 구조와레이블에중복성을

추가하는방식으로구현한다. DNNs을 앙상블로설계하여구조자체에중

복성을추가하며, 레이블을원-핫 벡터가아닌오류정정 부호, 즉 코드워

드로인코딩한다. 따라서 ECOCs는특징 학습을위한다양성과오류정정

능력을 확보할 수 있다. 각 코드워드들은 오류 정정을 위해 해밍 거리가

크도록 설계되어야 한다.

ECOCs는 적대적 훈련 기법에 비해 계산 비용이나모델 크기 측면에서

도 매우 효율적으로 높은 수준의 적대적 강건성을 유지할 수 있다. 본 연

구에서는 ECOCs와 VIB의 결합을 통해 적대적 학습 모델 대비 약 1/14

수준의 모델 용량만으로 약 4% 높은 적대적 정확도를 달성하였다.

Ⅱ. 본론

2.1. 적대적 공격

DNNs이 적대적예제에취약하며, 공격자에의해신뢰성을위협받을수

있다는 것은 심각한 문제이다. 이러한 적대적 공격은 블랙박스 공격과 화

이트박스 공격으로 구분할 수 있다. 블랙박스 공격은 공격자가 DNNs의

구조나가중치값에접근할수없으며, 오직입력과출력만을이용해적대

적 예시를 생성한다. 반면 화이트박스 공격은 DNNs의 구조와 가중치 값

을 포함한 모든 정보를 활용할 수 있다. 화이트 박스 공격은 모델 정보를

이용해 보다 정교한 적대적 예시를 만들 수 있다. 화이트박스 공격은

DNNs의 신뢰도에 큰 영향을 미치기 때문에, 적대적 강건성 연구에서 널

리사용되어왔다. 해당분야에서주로사용되는화이트박스공격의예로

는투영경사하강법(Projected Gradient Descent: PGD) 공격 [4]이 있다.

PGD 공격은 빠른 기울기 부호 방법(Fast Gradient Sign Method:

FGSM)을 반복해서 수행하는 정교한 공격 기법이다. PGD 공격은 식 (1)

과 같이 정의된다.

(1)

와 는 신경망의 입력과 정답 레이블, 는 각 단계의 변형 정도를 의

미한다. 또한 ∘은부호함수, ∘은 DNNs의손실함수, 

는투영을 의미한다. PGD 공격은각  단계에서신경망의 손실함수 기울

기를 따라 만큼의 변형을이전 단계의이미지에 추가한다. FGSM 공격

보다 정밀한 공격이 가능하여, DNNs의 정확도에 치명적인 영향을 줄 수

있다.

2.2. Error Correcting Output Codes

오류 정정 부호(Error Correction Codes: ECCs)은 본래 통신 분야에서

오류를 탐지·수정하기 위해 고안된 기술이다. 최근 통신상의 오류와 적대

적공격의 유사성에서 착안하여 DNNs의 강건성을 높이는데 활용되고있

다. 다중 분류에서 ECOCs는 DNNs이 출력한비트열과각 클래스에 미리

지정된코드워드간 해밍 거리를계산해 거리가가장 작은 클래스를 예측



값으로 결정한다. 해밍 거리가 작은 경우, 몇 비트만 반전되더라도 잘못

분류되므로, 코드북설계시코드워드간거리를크게 확보하는것이 핵심

이다. 본 연구는 코드 길이의 절반에 해당하는 최대 최소 해밍 거리를 갖

는 하마다드 행렬을 코드북으로 사용해 오류 정정 능력을 보장한다. 예를

들어, 길이 16, 최소 거리가 8인 코드에서는 최대 3비트까지 오류를 정정

할 수있어, 하다마드 코드북이 적대적 환경에서특히 유리함을보여준다.

2.3. Variational Information Bottleneck

정보병목(Information Bottleneck: IB)는 입력 신호 가목표신호 

에 대해 의미 있는 정보는 보존하면서, 그 외의 불필요한 세부 정보는 일

반화 성능을 위해 최대한 압축하는 표현 를 찾는 기법이다. 즉

 →  →  마르코프 연쇄(Markov Chain)을 가정하고, 표현 와

 사이의상호정보  는최대화하되, 와표현  사이의상호

정보   는 최소화한다. 라그랑주승수 를도입하여 최대화목적

함수로 표현하면 식 (2)와 같다.

(2)

는 DNNs의 매개변수를 의미한다. 직관적으로 첫 번째 항은 가 를

잘 예측하도록 유도하고, 두 번째 항은 가 에 대한 불필요한 정보를

잊도록 만든다는것을 알수 있다. 또한 로정보 압축 강도를 조정할 수

있으며, 가 클수록 에는 보다 압축된 정보가 남게 된다.

하지만실제데이터분포를알수없으며, IB 목적식은상호정보량추정

및 최적화가 어렵다는 한계가 있다. 따라서 DNNs에 적용하기 위해서는

최적화 가능한 형태로 변환하는 것이 필수적이다. 이전 연구 [7]에서는

upper bound와 reparameterization trick을 통해 식 (3)을 정의한다.

(3)

은 학습 데이터 개수,   은 잠재 벡터  ,      

은 잠재벡터 로부터 의조건부확률을추정하는디코더,   

은 인코더가 출력한 잠재 벡터의 분포를 의미한다. 또한  은 사전분

포로써, 인코더 잠재 벡터 분포와의 KL 발산항을 통해 정보 압축을 달성

한다.

2.4. 실험 결과

본 연구에서는 10개의 클래스로 구성된 MNIST 데이터셋을 사용하였

다. 코드워드 길이는 16으로, 하다마드 행렬의 상위 10개 행을 선택해 코

드북을 구성하였다. MNIST 데이터셋에 대하여 epoch=500, batch

size=200, learning rate=1e-03로 설정하여 최적화하였다. 모델의 강건성

을 평가하기 위해 ∞ -PGD 공격을수행하였으며, 허용 최대 노름 =0.3,

반복 횟수=100, 스텝 크기=0.0075로 설정하였다. ECOC 구조는 TanhEns

[1] 구조와 동일하며, ECOC-VIB에 대해 는 1e-01로 설정하였다.

Madry는 적대적 훈련을 적용한 모델로써, 훈련 과정 중 적대적 예제를

생성하는 방식으로 모델의 강건성을 향상시킨다. 반면 ECOC,

ECOC-VIB 모델의경우적대적훈련을 수행하지않았으며, 표1의 결과는

오직 ECOC와 VIB 기법 여부에 따른 적대적 정확도이다.

MNIST (=0.3)

Models Clean PGD # Params

Madry [2] .985 .925 3,274,634

ECOC [1] .982 .934 215,632

ECOC-VIB .980 .964 232,272

표1. MNIST ECOC-VIB 모델 정확도

Ⅲ. 결론

본 연구에서는 오류 정정 출력 부호(ECOCs)의 오류 정정 능력과 변분

정보 병목(VIB)의 잠재 벡터 표현 압축 효과를 결합한 ECOC-VIB 모델

을 제안하였다. 제안 모델은 ECOCs 기반 앙상블 구조를 통해 이진 분류

기 사이의 다양성을 확보하고, VIB 정규화 항을 도입해 정보량을 조절함

으로써 과적합을 억제하였다. MNIST 실험 결과, Madry 적대적 학습 모

델에 비해 파라미터 수를 약 1/14로 줄이면서도 약 4% 높은 적대적 정확

도를 입증하였다. 이는 VIB를 통한잠재 벡터 압축이 ECOC의 오류 정정

효과와결합되어, 적대적학습없이도적대적강건성을향상시킬수있음

을 시사한다.

향후연구에서는 CIFAR-10, CIFAR-100 등복잡한데이터셋으로의확

장가능성을검증하고, VIB 정보 압축강도( )의 동적 조정및 코드북설

계를 통한 추가적인 경고성 및 효율성 개선을 목표로 한다.
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