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요 약  

 
본 논문은 쿠버네티스 멀티 클러스터 환경에서 생성 AI 추론 워크로드를 보다 효율적으로 처리하기 위해, 

Kueue 의 정적 ClusterQueue 지정 한계를 보완하는 동적 ClusterQueue 선택 전략을 제안한다. 제안한 전략은 (1) 각 

ClusterQueue 의 실시간 자원·대기열 지표를 제공하는 Quota API 와 (2) Job 제출 단계에서 지표를 기반으로 ‘Light 

GPU Job’을 자동으로 CPU ClusterQueue 로 fallback 시키는 Job Submission Gateway 로 구성된다. Stable Diffusion 

v1.5 모델을 활용해 GPU Job(steps=30)과 Light GPU Job(steps=5)을 Uniform(교차), Burst(집중) 두 시나리오로 
실험한 결과, 제안된 전략은 정적 방식 대비 전체 Job 완료 시간을 각각 14.3%, 11.6% 단축하였다. 이는 GPU 대기열 

혼잡을 줄이고 CPU 자원을 활용한 효과로, Kueue 기반 멀티 클러스터 스케줄링의 지연 최소화 가능성을 보여준다.  

 

Ⅰ. 서 론  

최근 쿠버네티스의 배치(Job) 워크로드는 생성 AI 

추론, 대규모 데이터 전처리, 과학 계산 등 다양한 

연구·산업 환경에서 빠르게 활용 범위를 넓혀가고 

있다.[1] 그러나 쿠버네티스의 기본 스케줄러는 Job 
대기열 관리, 선점(preemption), 이질적 자원(GPU, 

CPU)의 혼합 배치와 같은 고급 스케줄링 기능을 

제공하지 못한다. 이러한 한계를 보완하기 위해 Volcano, 

YuniKorn, Kueue 와 같은 대기열 기반 스케줄러가 
제안되어 왔다. 세 시스템은 공통적으로 Job 을 대기열에 

적재하고, 자원 상태, 우선순위, 사용자 정의 정책 등을 

고려하여 스케줄링 결정을 내리지만, 구현 방식과 

철학에는 차이가 있다.[1] 특히 Kueue 는 Custom 
Resource Definition(CRD)와 컨트롤러만으로 구현돼 

쿠버네티스 네이티브 방식의 배치 스케줄링을 지향한다. 

[2] 핵심 개념인 ResourceFlavor 는 동일 자원 타입의 

세부 구성을, ClusterQueue(CQ)는 클러스터 범위의 자원 
풀을, LocalQueue(LQ)는 네임스페이스별 하위 풀로써 

다중 팀 환경에서 정책 분리를 용이하게 한다. 

Kueue 의 베타 기능인 MultiKueue 는 하나의 Kueue 
Manager 클러스터와 여러 Kueue Worker 클러스터가 

전역 CQ 를 공유하도록 설계되어, 멀티 클러스터 

환경에서도 일관된 Job 대기열 관리가 가능하다.[2] 

그러나 Kueue 는 Job 객체에 명시된 queue-name 
라벨을 기준으로 제출 시점에 CQ 가 고정되기 때문에, 

실행 지연이나 클러스터 자원 불균형에 대한 동적 

대응이 어렵다. 예를 들어, GPU CQ 의 대기열이 

과도하게 길어지더라도 해당 Job 을 CPU CQ 로 
이동시킬 수 없어, 전체적인 스케줄링 효율성이 저하된다. 

또한, Stable Diffusion v1.5 와 같은 생성 AI 모델은 

GPU 가 아닌 CPU 환경에서도 실행 가능함에도 

불구하고, Kueue 의 구조적 제약으로 인해 이러한 

유연한 자원 전환이 어렵다.[3] 

본 연구는 Job 제출 시점에 CQ 를 동적으로 선택할 

수 있도록 하여, GPU 자원 상태에 따라 상대적으로 
가벼운 GPU Job(이하 Light GPU Job)을 CPU CQ 로 

자동 fallback 시키는 전략을 제안한다. 이를 통해 

쿠버네티스 멀티 클러스터 환경에서 Kueue 를 기반으로 

한 클러스터 간 Job 스케줄링의 유연성과 지연 시간 
최적화 방법을 실현하고, 생성 AI 의 추론 작업이 보다 

효율적으로 수행될 수 있도록 기여하는 것을 목표로 

한다. 

Ⅱ. 쿠버네티스 멀티 클러스터 환경 

그림 1. 쿠버네티스 멀티 클러스터 환경 설계도 



 

연구용 서버랙에는 그림 1 과 같이 총 다섯 개의 

쿠버네티스 클러스터가 구축되어 있다. 모든 노드는 
Power(1Gbps), Management(1Gbps), Kubernetes 

Plane(1/10Gbps) 세 NIC 으로 분리되어 원격 전원 제어, 

구성 관리, 쿠버네티스 네트워크를 물리적으로 격리한다. 

이번 실험에서는 Control Cluster 를 Kueue Manager 로, 
GPU Cluster 를 Kueue Worker 로 사용하며, 각각 CPU 

CQ 와 GPU CQ 를 포함한다. GPU Cluster 에는 Tesla 

T4 GPU 4 대가 탑재되어 있다. 이러한 환경은 CPU 와 

GPU 자원이 네트워크, 하드웨어 차원에서 분리된 실험 
조건을 제공해 동적 CQ 선택 전략의 효과를 측정하기에 

적합하다. 

 

Ⅲ. 서비스 설계 및 구현  

본 연구에서는 Stable Diffusion v1.5 모델을 사용하여,  
추론에 사용되는 입력 변수인 steps 를 각각 30 과 5 로 

하는 두 종류의 배치 추론 Job 을 대상으로 한다. 

전자(이하 GPU Job)는 현실적으로 GPU 환경에서만 

실행 가능하며, 후자(이하 Light GPU Job)는 추론 
시간이 길어지지만 CPU 환경에서도 실행 가능하다.[3] 

위 그림 2 는 전체 서비스 아키텍처를 시각화한 것이다. 

Quota API 는 Kueue Manager 로부터 각 CQ 의 상태를 
조회한 값을 JSON 으로 반환한다.[4] Job Submission 

Gateway 는 입력으로 주어진 Job YAML 을 파싱해 

Job 의 종류를 식별하고, Light GPU Job 의 경우 Quota 

API 로부터 각 CQ 의 실시간 자원 Quota 상태와 
pendingWorkloads 수를 전달받아 동적 CQ 선택 

알고리즘을 실행한다. 이 알고리즘은 GPU 자원의 점유 

상태, GPU CQ 의 pendingWorkloads 값, CPU CQ 의 

reservingWorkloads 값을 순차적으로 확인하고, 이 세 
조건을 모두 만족할 경우 Light GPU Job 은 CPU CQ 를 

선택하기 위해 입력받은 Job YAML 을 수정하여 Job 을 

제출한다.[4] 그 외의 경우, 입력받은 Job YAML 을 

수정없이 그대로 제출한다. 제출된 Job 은 CPU CQ 또는 
GPU CQ 로 할당되고, Kueue 에 의해 승인되면 각각 

CPU 클러스터, GPU 클러스터로 스케줄링된다.  

 

Ⅳ. 검증 및 결과 

동적 CQ 선택 알고리즘을 검증하기 위해 두 가지의 

시나리오를 가정하였다. Uniform 시나리오에서는 1 초 

간격으로 GPU Job 과 Light Job 을 교차하여 총 30 개를 

입력하였다. Burst 시나리오는 GPU Job 15 개를 연속 
제출한 직후 Light GPU Job 15 개를 연속 제출했다. 각 

시나리오마다 동적 CQ 방식과 정적 CQ 방식을 적용해 

각각 5 회 반복 측정했다. 처음 Job 을 제출한 시점부터, 

모든 Job 이 실행을 마치기까지 걸리는 시간을 지표로 

삼았다. 

표 1. 실험 결과 
시나리오 정적 CQ (s) 동적 CQ (s) 감소율 (%) 

Uniform 201.6 172.8 14.3 

Burst 235.5 208.2 11.6 

Uniform 시나리오에서는 동적 CQ 선택 방식이 정적 

CQ 방식에 비해 14.3%의 낮은 실행 시간을 보였으며, 

Burst 시나리오에서는 이보다 소폭 적은 11.6%의 낮은 

실행 시간을 보였다. 이는 동적 CQ 선택 전략이 일부 
Light GPU Job 을 CPU 환경에서 실행되도록 

스케줄링하여, GPU 자원에 대한 대기열 밀집을 완화했기 

때문으로 해석된다. 이로부터 동적 CQ 선택 전략을 통해 

전체 생성 AI 추론 Job 의 실행 시간을 단축했음을 

확인할 수 있다. 

Ⅴ. 결론 및 향후 연구 

본 논문은 Kueue 환경에서 Job 제출 시점에 GPU 
자원 및 Job 대기열 상태에 따라 Light GPU Job 을 CPU 

ClusterQueue 로 자동 fallback 시키는 동적 

ClusterQueue 선택 전략을 제안하였다. 이 전략은 

Kueue 의 구조적 한계인 정적 ClusterQueue 지정 
문제를 보완하며, 쿠버네티스 멀티 클러스터 환경에서 

클러스터 간 Job 스케줄링의 유연성과 추론 지연 시간 

최적화 가능성을 실험적으로 입증하였다. 

향후에는 Kueue 자체에서 Admission 단계에서 
ClusterQueue 를 동적으로 결정할 수 있는 기능이 

공식적으로 지원된다면, 외부 Gateway 없이도 더 

단순한 구조로 유사한 효과를 기대할 수 있다. 또한, 

추후 연구에는 H100, A100, L40 등 다양한 성능의 GPU 
풀을 계층적으로 구성하여, 상위 사양 GPU 가 부족할 때 

자동으로 하위 성능 GPU 로 우회하는 방식의 동적 

스케줄링 전략을 탐색해볼 수 있을 것이다. 
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그림 2. 서비스 아키텍처 


