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500
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-1000
] 100 200 300 400 500
Episode
ECR T e RER
Sch V2V payload transmission | Achievable rate of
cheme success probability V2I-VUEs(Mbps)
0:5 & Random 0.7000 0.000
1:4 & Random 0.5375 2.263
2:3 & Random 0.4125 4.445
3:2 & Random 0.2625 6.538
4:1 & Random 0.0000 8.261
5:0 & Random 0.0000 9.674
Proposed 1.0000 4.483
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