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요 약

자율주행 차량, 드론 및무인항공기등 자원이 제한적인 시스템에서실시간객체탐지는높은 연산량과전력 소모를 요구하
는 ANN(Artificial Neural Network) 기반 모델의 제약으로 어려움을 겪고 있다. 본 연구에서는 기존 YOLOv8n 모델의
Convolution 계층에 LIF(Leaky Integrate-and-Fire) 뉴런을 결합한 SpikeConv 계층을 제안하여, 객체 탐지성능은유지하면서
저전력이벤트기반연산을실현한 Spiking YOLO 모델을개발하였다. SpikeConv는 membrane potential을 순차적으로갱신하
고, 채널별 가중치 분포에 따른 adaptive threshold를 적용해 스파이크 소실을 최소화한다. 전동 킥보드 불법 주행 단속용
Custom Dataset을 활용한학습 및 추론 실험에서, 제안 모델은 mAP ≈ 99%, F1-score ≈ 0.99를 유지하면서 추론 시간, 에너
지 소모 및 GFLOPs를 모두 유의미하게감소시켰다. 이러한 결과는 자원이 제한된 환경에서도 고성능·저전력을 동시에 달성할
수 있는 ANN to SNN 변환 기술의 실용 가능성을 제시한다.

Ⅰ. 서 론

현재 자율 주행 차량, 드론 및 무인 항공기 등의 지능형 이동체는 충돌

방지, 경로 계획, 환경 인식등자율동작을위해실시간객체탐지기능이

필수적이다. 특히 제한된 전력과 컴퓨팅 자원을 갖는 임베디드 시스템 환

경에선, 높은 정확도를 보여주는 ANN(Artificial Neural Network)을 적

용하면서 많은 연산 및 높은 전력 소모를 요구한다.

기존 YOLOv8n 모델은경량화 및 고속 추론을위해 설계된 구조로, 다

양한 객체 탐지 응용 분야에서 우수한 성능을 입증하였다[1]. 그러나

YOLOv8n은 수백만 건의 부동소수점 연산(FLOPs)과 연산당 높은 전력

을 필요로 하며, 배터리 구동 드론이나 차량 내 임베디드 보드 등 자원이

제한된 환경에서 실시간 처리에 한계가 있다[2].

SNN은 뉴런 간스파이크신호전달을기반으로동작하며, 입력이임계

값을초과한 순간에만활성화되어이벤트기반 연산을수행함으로써불필

요한 연산을 줄여 저전력 및 저지연 처리, 계산량 감소를 가능하게 한다

[3]. 최근 들어 컴퓨팅 자원이 제한된 환경에서도 효율적인 추론 성능을

달성할 수 있는 SNN 모델에 대한 관심이 커지고 있으며, 특히 신경모방

(Neuromorphic) 하드웨어와 결합하여 더욱 큰 효율성을 제공할 수 있음

을 확인했다[4]. SNN 기반의 객체 탐지 시스템은 적은 전력과 낮은 하드

웨어 리소스를 요구하므로, 자율 주행 차량이나 드론과 같이 연속 동작이

필수적인 분야에서 장기 운용 및 배터리 수명 연장에 기여할 수 있다. 또

한, 기존 ANN 기반 객체 탐지 모델은 일반적으로 복잡한 환경이나 실제

환경에서의 성능저하가불가피하며, 특히 조도 변화, 다양한각도의객체

출현, 가림 현상 등 실외 환경에서 발생할 수 있는 여러 가지 상황에서의

탐지 정확도가 현저히 감소하는 경향이 있다. 이러한 한계를 극복하기 위

한 다양한 방법 중 하나로 이벤트 기반 SNN 연산이 주목받고 있으며,
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본 연구에서도 실제 환경에서 촬영된 다양한 각도의 객체 이미지를 포함

한 전동 킥보드 불법 주행 단속용 Custom Dataset을 사용하여 현실적이

고 실용적인 SNN 객체 탐지 시스템을 구현하였다.

본 연구는 기존 ANN의 정확도를 유지하는 것을 넘어서, 실시간 객체

탐지 시나리오에서 발생할 수 있는 실제적인 제약 조건을 고려하여 전력

소모및계산복잡성을효과적으로줄이고자한다. 실험 결과를통해제안

된 Spiking YOLO 모델은 실제 응용 환경에 적용되어임베디드 하드웨어

플랫폼에서의 효율적인 추론 성능과 높은 신뢰성을 동시에 만족시킬 수

있는 실용적인 솔루션으로 활용 가능성을 갖는다.

본 논문의 구성은 다음과 같다. 2절에서는 제안한 Spiking YOLO 모델

의 데이터 전처리 파이프라인, SpikeConv 계층 설계, 그리고 fine tuning

학습 및 프로파일링 기반 성능 평가 방법을 상세히 기술하며 평가 결과를

분석한다. 끝으로 3절에서는본논문의 결론및 향후연구방향에관해기

술한다.

Ⅱ. 본론

본 절에서는 [그림 2]의 5단계 파이프라인을 따라 Spiking YOLO 모델

의구현및 평가과정을요약한다. Custom Dataset의 이미지와텍스트 라

벨을 매칭해 유효샘플을선별한뒤 640 × 640으로 조정하고 0∼1로 정규

화하여 채널 우선(C, H, W) 텐서로 변환하며, PyTorch DataLoader의 배

치 크기, 셔플링, 다중 워커 설정으로 입력 일관성을 확보한다. YOLOv8n

backbone의 모든 3 × 3 이상 Conv2d 계층을 SpikeConv 모듈로 교체한

다. SpikeConv 내부에서는 convolution 연산으로 공간적 특징을 추출하

고, 배치 정규화로 채널별 출력을 안정화한 뒤 Leaky Integrate & Fire

Neuron이 membrane potential을 누적해 스파이크를 발생시킨다. 마지막

으로 SignedNeuron이 양·음스파이크를생성하며, surrogate gradient 기

법을 통해 미분 불가능 구간을 근사 미분함으로써 end-to-end 학습이 가



능하도록 설계하였다. 이 과정에서 원본 가중치·바이어스를 보존하고 채

널별 가중치 분포에 기반한 adaptive threshold를 자동 조정해 초기 스파

이크 소실을억제하였다. 학습 설정은배치 크기 32, 200 epochs 조건으로

fine-tuning을 수행해 최적 파라미터로 수렴시켰다.

[그림 1] Spiking YOLO 모델
구성 및 평가

학습 완료 후, 프로파일링 평가를 통해 GPU 전력 소비·스파이크 발생,

GFLOPs, 평균 지연 시간·에너지 소비를 측정한 결과, [표 1]에서 볼 수

있듯이, Spiking YOLO는 기존 YOLO 모델 대비 전반적인 검출 성능을

유지하면서 연산량 및 전력 소모가 크게 절감되었다.

Model mAP50(%) Latency(ms) Energy(mJ) GFLOPs

YOLO 99.35 31.8 1464.8 0.85

Spiking
YOLO 99.26 26.2 1217.0 0.72

[표 1] YOLO 모델과 Spiking YOLO 모델 비교 결과

먼저, mAP50의 경우는 두 모델 모두 99% 이상의 유사한 검출 정확도

를 기록하였으며, F1-score는 두 모델 모두 0.99의 값을 가진다. 또한 추

론 지연 시간 (Latency)은 Spiking YOLO 모델이 기존 YOLO 모델에 비

해 약 17% 빠른 응답 속도를 보였다. GPU 전력 측정 결과, Spiking 모델

은 단일 추론당 1217.0 mJ의 에너지를 소비하여 기존 YOLO 모델의

1464.8 mJ에비해약 17% 절감되었으며, 효율적이벤트기반연산을통해

GFLOPs 역시 0.72로 기존의 YOLO 모델의 0.85 대비 약 15% 감소하였

다. 이처럼 Spiking YOLO 모델은핵심성능 지표인 mAP50 과 F1-score

에 대해 유사한 성능을 보이면서 지연 시간, 에너지 소모, 연산량 측면에

서 모두 기존 모델 대비 좋은 성능을 보인다. [그림 1]은 동일한 테스트

이미지에 대한 기존 YOLO 모델과 Spiking YOLO 모델의 검출 결과를

비교한것이다. 기존 YOLO 모델은 제공된 테스트 이미지에서 ‘people’ 객

체를 94.1%, ‘kickboard’ 89.1%, ‘nonhelmet’ 2개 객체에 대해 각각 99.7%,

87.8%, ‘person’ 2개의 객체에 대해각각 90.5%, 88.7%의신뢰도로 탐지되

었다. Spiking YOLO 모델은 동일한 테스트 이미지에 대해서 ‘people’

[그림 2] 기존 YOLO 모델 (좌) 및

Spiking YOLO 모델 (우) 객체 검출 결과

객체를 94.9%, ‘kickboard’ 92.3%, ‘nonhelmet’ 2개 객체에 대해 각각

88.7%, 87.6%, ‘person’ 2개의 객체에 대해 각각 88.9%, 88.3%의 결과가

나타났다. 이처럼 Spiking YOLO는 주요객체클래스에대해기존모델과

유사한 성능을 보이며, SpikeConv 대체가 탐지 안정성에 부정적 영향을

끼치지 않았음을 확인할 수 있다.

Ⅲ 결론

본 연구에서는 YOLOv8n 모델의 Convolution 계층을 SpikeConv 모듈

로대체하고 fine tuning을거쳐, 실용적 SNN 기반 객체 탐지기를 구현하

였다. 제안된 Spiking YOLO는 기존모델과유사한검출정확도를보장하

면서도, 불필요한 연산과 전력을 효과적으로 줄여 자원 제한적 임베디드

환경에서의 실시간 객체 탐지에 적합함을 입증하였다. 향후에는

neuromorphic 칩 호환성 검증, 다양한 객체 클래스 및 실제 환경 적용확

대를 통해 제안 기법의 범용성과 실용성을 더욱 강화할 예정이다.
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