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요 약

본 논문은저궤도(LEO: Low Earth Orbit) 위성 환경에서 발생하는 간헐적 통신과사물인터넷(IoT: Internet of Things)의 클라이언트 간 자원 이질
성을 고려하여, 로컬 데이터양, 모델 변화량, 로컬 업데이트 수를 통합적으로 반영한 새로운 연합학습(FL: Federated Learning) 알고리즘을 제안한다.
실험을 통해전통적인 FL 알고리즘대비높은 글로벌모델 정확도를달성함을 확인하였고, 이를 통해 제안하는알고리즘에대한 LEO 위성 IoT 환경에
서의 적용 가능성을 확인하였다.

Ⅰ. 서 론

사물인터넷(IoT: Internet of Things)은 다양한 장치들이 인터넷을 통해

연결되어 데이터를 주고받고, 자동화 및 원격 제어를 가능하게 하는 기술

로, 최근에는빅데이터및인공지능기술과융합되어산업전반에걸쳐활

용되고있다[1],[2]. 농경지, 해양, 사막, 극지방 등과같은도심외곽지역에

서의 IoT의 활용이확대되고 있다[3]. 그러나, 이러한지역에서는 통신인

프라의부재로안정적연결을제공할수없다는한계가있으며, 이에 대한

대안으로 최근 저궤도(LEO: Low Earth Orbit) 위성의 활용이 주목받고

있다. LEO 위성은 상대적으로 낮은 고도에서 고속으로 지구를 공전하며,

작은 지연 시간과 넓은 통신 범위를 제공할 수 있다는 특성을 가진다[4].

그러나, 고속 이동으로 인해 위성과 단말 간 연결 시간이 매우 짧고 간헐

적이기 때문에, 기존의 중앙집중형(Centralize) 학습 방식은 적용하기 어

렵다는 한계를 갖는다.

따라서, 통신 효율성을 높이고 데이터 전송 지연 시간을 최소화할 수 있

는 분산(Distributed) 구조가 요구되며, 각 단말이 로컬에서 학습을 수행

한 후 로컬 모델만을 서버로 공유하고, 서버에서는 글로벌 모델을 업데이

트하여 배포하는 연합학습(FL: Federated Learning)이 많은 관심을 받고

있다. 또한, LEO의 간헐적 연결 특성은기존의 동기식(Synchronized) FL

에 제약을발생시킨다. 동기식 FL은 모든클라이언트가로컬 모델을전송

해야만 글로벌 모델이 생성되는 방식으로, 일부 클라이언트의 로컬 모델

학습이 지연되거나, 클라이언트가 연결되지 않는 경우 전체 학습이 지연

되거나 중단되는 문제가 발생한다. 따라서, LEO 위성 기반 IoT 환경에서

는 위성과 연결 가능한 클라이언트만 글로벌 모델 업데이트에 참여할 수

있도록 하는비동기식(Asynchronized) FL 구조가적합하다. 그러나, 전통

적인 FL 알고리즘인 FedAvg[5], FedProx[6], FedNova[7] 등은 동기식

구조로 설계되었는데 이는 클라이언트와 LEO 위성 간의 연결 특성을 반

영하지 못해 학습 안정성과 학습 지연을 발생시킨다.

본 논문에서는로컬데이터양, 클라이언트별연산량, 모델 변화량을모두

고려한 새로운 FL 알고리즘을 제안한다. 제안된 알고리즘은 글로벌 업데

이트이후 로컬모델의변화량을고려함으로써 비동기환경에서도적용할

수 있으며, LEO 위성 기반 IoT 환경에서 안정적이고효율적인글로벌 모

델 수렴을 달성할 수 있다.

그림 1. LEO 위성 기반 IoT 시스템

Ⅱ. 시스템 구성

그림 1은 본논문에서 고려하는 LEO 위성 기반 IoT 시스템을 보여주며,

LEO 위성과 IoT 클라이언트들로구성된다. 각 클라이언트는센서나저전

력연산장치등으로구성되어있다. 클라이언트는개별로컬데이터를보

유하고 있으며, 해당 데이터를 기반으로 독립적으로 작업을 수행한다.

LEO 위성은사전정의된궤도를따라지구를빠른속도로공전하며, 일정

시간 동안 각 클라이언트와 간헐적으로 연결된다. 이때, 클라이언트는 위

성과연결되어야만 학습결과를전송할수있으며, 위성은수신된로컬모

델을 집계하여 글로벌 모델을 생성한다. 이후 업데이트된 모델은 다시 클

라이언트에게 전송된다. 이러한 구조를 통해 LEO 위성이 갖는 통신 연결

시간의 불균형, 그리고 클라이언트 간 학습의 이질성을 반영한다.

Ⅲ. 기존 알고리즘의 한계 및 제안 알고리즘

A. 기존 연합학습 알고리즘의 한계

LEO 위성 기반 IoT 환경에 기존의 FL 알고리즘을 그대로 적용하기에

는한계가있다. 대표적인 FL 알고리즘인 FedAvg는 클라이언트별로컬

모델을 단순 평균하여 집계하는 방식으로, 클라이언트 간 데이터양의 편차

가 커짐에 따라 성능 저하가 발생할 수 있다는 한계가 있다. FedProx는

이를 완화하기 위해 모델 간 데이터양의 이질성을 고려하였지만, 클라이언

트의 실제학습참여 정도, 즉로컬업데이트 수(Epoch)를 고려하지 않는

다. FedNova는 로컬 업데이트 수에 대한 고려를 통해 학습량의 차이를

정규화하지만, 모델 변화량과 같은 해당 클라이언트가 글로벌 모델의 성능

에미치는 영향에 대한 고려는이루어지지않았다. 또한, 위의 알고리즘모



두 동기식 구조를 기반으로 설계되었기 때문에, 통신이 간헐적으로 연결되

는 LEO 위성 환경과는 맞지 않아 학습 지연 및 병목 현상을 야기할 수

있다.

B. 제안 알고리즘

본 논문에서는 LEO 위성 기반 IoT FL 환경의 통신불균형과 학습정도

의 이질성등의문제를 해결하기 위한 영향력기반집계알고리즘을 제안

한다. 제안하는알고리즘은로컬학습에사용된데이터양, 글로벌 모
델업데이트이후의파라미터변화량 , 로컬 업데이트수 를통
합적으로 고려하여클라이언트별영향력을 계산한다. 영향력수식은다음

과 같다.   ∙  ∙    ∙  (1)

이때,  은 각각의 항목이 미치는 영향에 대한 비율을 나타내며,        ∊  이다. 이후 글로벌모델은가중평균
방식으로 업데이트하며, 수식은 다음과 같다.

      ∙∆ (2)

Ⅴ. 성능 검증 시스템 구현 및 성능 평가

본 절에서는 앞서 Ⅳ절에서 제안한 알고리즘을 검증하기 위해 FL 시스

템을 하드웨어로 구현하고, 알고리즘의 학습 정확도를 비교한다. 실험에

는 총 3개의 클라이언트가 참여하며, CIFAR-10 데이터를 기반으로 객체

분류(Classification) 작업을 수행한다. 이때, 클라이언트별 데이터 이질성

을 위해 각 클라이언트에 학습 데이터를 불균등하게 할당하였다. 로컬 학

습에 사용된 주요 파라미터는 표 1에 요약되어 있다. 알고리즘별 성능 비

교를 위해, FedAvg, FedProx, FedNova 알고리즘을 비동기 방식으로 구

현하고, 학습 정확도를 비교하였다. 각 클라이언트는 서버와 연결이 가능

해질 때까지 개별적으로 로컬 학습을 진행하며, 연결이 가능해지면 해당

시점까지 학습된 로컬 모델 파라미터를 서버로 전송한다. 서버는 수신된

모델 파라미터를 집계하고, 알고리즘에 따라 가중 처리한 후 글로벌 모델

을 생성하여 클라이언트에 전달한다. 하드웨어 구축에 사용된 서버와 클

라이언트에 대한 상세 사양은 표 2에 요약되어 있다.

표 1. 학습 파라미터

명칭 CPU RAM Storage
Server 6 Core 4.40 GHz 32GB 512GB
Client 1 4 Core 2.40 GHz 8GB 32GB
Client 2 4 Core 1.80 GHz 8GB 32GB
Client 3 4 Core 1.80 GHz 4GB 32GB

표 2. 하드웨어 상세 사양

그림 2는 제안한 알고리즘과 대표적인 FL 알고리즘(FedAvg, FedProx,

FedNova)의 라운드별 글로벌 모델 정확도 변화를 비교한 결과를 보여준

다. 실험 결과, FedAvg는 62.1%, FedProx는 63.4%, FedNova는 63.6%의

정확도를달성하였지만, 제안한 알고리즘은 65.7%의정확도로, 기존 알고

리즘 대비 가장 높은 정확도를 보였다.

그림 2. FL 알고리즘별 글로벌 모델 정확도

Ⅳ. 결론

본논문에서는 LEO 위성기반 IoT 환경에서, FL의 글로벌모델정확도

향상을 위해 클라이언트의 로컬 데이터양, 모델 변화량, 로컬 업데이트 수

를모두고려한새로운연합학습알고리즘을제안하였다. 실험을통해기존

알고리즘 대비 높은 학습 정확도를 달성할 수 있음을 확인하였다. 이를 통

해제안하는 알고리즘이 LEO 위성기반 IoT 환경에서적용될 수있음을

확인하였다.
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Parameters Values
Training Episode 4,000
Learning Rate 0.01
Data Size 5,000, 10,000, 20,000
Batch Size 64


