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요 약 

 

제지공정은 복잡한 열/유체/기계 시스템으로 구성되어 스팀 사용량 예측이 어렵고, 이에 따라 물리 

모델과 AI 모델을 결합한 트윈 모델이 주목받고 있다. 본 연구는 국내 제지공정에서 수집된 1 분 간

격의 1 년치 스팀 사용량 시계열 데이터를 기반으로, 전처리와 영향인자의 상관계수 기반 변수 선별 

과정을 거쳐 해석력과 신뢰도가 높은 6 개 변수를 PySR(Python Symbolic Regression)입력으로 활용한

다. 트윈 모델은 LSTM(Long Short-Term Memory)기반 예측과 물리 모델 결과를 가중합하여 구성되며, 

물리 모델의 예측 오차에 대해 PySR 기반 보정 수식을 적용함으로써 해석 가능성과 성능을 동시에 

확보한다. 그 결과, 기존 물리 모델 대비 약 19%의 상관계수 향상이 나타나며, 트윈 모델의 실용성과 

확장 가능성을 입증한다. 

 

 

Ⅰ. 서 론 

제지공정은 스팀 소비가 많은 에너지 집약 공정으로, 

과잉/부족사용 시 에너지 낭비, 탄소 배출 증가/제품 품

질 저하를 초래한다[1]. 스팀 사용량의 정밀한 예측과 최

적화는 공정 효율 향상, 비용 절감, 품질 유지, 탄소 저감

을 위한 핵심 과제이다[1]. 하지만 제지공정은 열, 유체, 

기계 시스템이 복합된 비정형적 구조로, 계절, 설비 상태, 

원료 특성 등 다양한 요인에 따라 공정 조건이 수시로 

변동된다. 이로 인해 스팀 사용량 예측이 더욱 어려워지

며, 이에 대한 대응으로 트윈 모델이 주목받는다[2]. 

트윈 모델은 물리 모델의 해석 능력과 AI 모델의 데이

터 기반 예측력을 결합함으로, 제지공정 내 다양한 운전 

조건에 대한 시뮬레이션과 예측이 가능하다[3]. 예를 들어, 

스팀 압력, 설비 가동률, 외기 온도, 원료 수분 함량 등이 

변화할 경우, AI 모델은 과거 데이터를 기반으로 스팀 소

비 패턴을 정밀하게 예측하며, 물리 모델은 공정 원리를 

바탕으로 데이터 부족이나 이상 조건에서도 예측 안정성

을 제공한다. 다만, 실제 적용에서는 두 모델 간 성능 불

균형이 문제로 작용한다. 최근 수년간 인공지능 모델은 

빠르게 고도화된 반면, 물리 모델은 제한적인 개선에 그

쳤다. 따라서 두 모델 간 균형과 협력 구조의 개선은 트

윈 모델 성능 향상의 핵심 요소로 작용한다[4]. 

 

Ⅱ. 제지공정 데이터 분석 

2.1 데이터 및 환경 구성 

국내 제지 공정에서 수집된 스팀 사용량 시계열 데이

터를 활용한다. 해당 데이터는 1 분 간격으로 기록된 1 년

치 자료를 포함하며, 결측값 보간, 이상치 제거, 정규화 

등의 전처리 과정을 거쳐 분석에 사용한다. 사용된 값들

은 스팀사용량, 재료농도, 이력타입, 평량, 생산 길이, 속

도 표준, 속도 계산이다. 스팀사용량은 최적화하기 위한 

목표값이다. Reel 평균, Size 평균, Reel 수분량, stockFlow 는 



물리 모델에 사용되는 변수이다. 재료 농도, 이력 타입, 

평량, 생산 길이, 속도 표준, 속도 계산은 스팀사용량과 

상관관계가 높은 변수이며, PySR(Python Symbolic 

Regression)의 입력에 활용한다. 

 

2.3 영향인자의 상관계수 

그림 1 에서 데이터분석의 신뢰성을 확보하기 위해 

결측률이 6% 미만인 변수만을 선별하여 PySR 의 입력에 

활용하고, 입력 종류 중 6 개가 선정된 상관관계 

히트맵이다. 

그림 1. 영향인자 간의 상관계수 히트맵 

Ⅲ. 방법론 

3.1 트윈 모델의 전체 구조 

계절, 설비 상태, 원료 특성 등 다양한 요인에 따라 열, 

유체, 기계 시스템이 복합된 비정형적 구조인 팩토리에서 

공정 조건이 수시로 변동된다. 이로 인해 스팀 사용량 예

측이 어려워져, 트윈 모델의 구조를 제안한다. 물리 모델

과 인공지능 모델을 가중합 형태로 결합하여 스팀 사용

량을 예측하는 모델이다. 연구의 핵심 목적은 물리 모델

의 고도화에 있으며, 트윈 모델은 다음과 같다: 

𝑆𝑡𝑒𝑎𝑚
트윈

 =  𝛼 × 𝐿𝑆𝑇𝑀(𝑥)+ 𝛽 × 𝑆𝑡𝑒𝑎𝑚
계산⏟          

고도화 부분

 

여기서 기존의 𝑆𝑡𝑒𝑎𝑚
계산

 를 고도화한다. 𝐿𝑆𝑇𝑀(𝑥) 는 

LSTM(Long Short-Term Memory) 기반의 예측값이고, 

𝑆𝑡𝑒𝑎𝑚
계산

은 물리 모델 예측값이며, α와 β는 모델 학습 

이후 성능 개선을 위해 후처리 단계에서 조정 가능한 

가중치이다. 

 

3.2 물리 모델의 성능 향상 

본 연구는 기존 물리 모델인 𝑆𝑡𝑒𝑎𝑚
계산

 의 구조를 

고도화하는 데 목적이 있다. 기존 물리식은 다음과 같이 

정의된다: 

𝑆𝑡𝑒𝑎𝑚
계산

 =  𝑊1 × 𝑅𝑒𝑒𝑙평균 + 𝑊2 × 𝑆𝑖𝑧𝑒평균  

                       + 𝑊3 × 𝑅𝑒𝑒𝑙수분량 + 𝑊4 × 𝑠𝑡𝑜𝑐𝑘𝐹𝑙𝑜𝑤 + 𝐵 

𝑊1,𝑊2,𝑊3,𝑊4 는 물리식의 가중치이며, B 는 상수항이다. 

본 연구에서는 기존식에 PySR 을 이용해 조정항 A(x)와 

상수항 𝐵𝑎𝑑𝑗 를 추가하여 𝑆𝑡𝑒𝑎𝑚
잔차

을 적용한다. 이는 

단순한 오차 보정이 아니라, 잔차의 구조를 수학적 

물리적으로 해석 가능한 형태로 표현하기 위함이다. 입력 

변수와 출력 간의 관계를 기호 기반 수식으로 추론하는 

symbolic regression 기법으로, 해석력과 데이터 기반 

보정을 자연스럽게 결합할 수 있는 효과적인 방식이다. 

PySR 모델은 다음과 같은 함수 집합 A(x)을 허용한다: 

𝐴(𝑥)  =  {𝑙𝑜𝑔(𝑥), 𝑎𝑥, √𝑥, sin(𝑥) , cos(𝑥) , tan(𝑥) , 𝑥𝑛,
1

𝑥
,𝑊𝑥} 

상관계수로 재료농도 및 선형관계로 𝑊𝑥 를 선정한다. 

𝑆𝑡𝑒𝑎𝑚
잔차

에 대해 PySR 을 통해 다음과 같이 정의된다: 

𝑆𝑡𝑒𝑎𝑚
잔차

 =  𝑆𝑡𝑒𝑎𝑚
실제

 –  𝑆𝑡𝑒𝑎𝑚
계산

 

≈  𝐴(𝑥)  + 𝐵𝑎𝑑𝑗⏟        

𝑃𝑦𝑆𝑅 모델

 

        = 𝑊5 ×재료_농도 + 𝐵𝑎𝑑𝑗 

실제값에 PySR 을 직접 적용하면 기존 물리 모델과 

무관한 함수가 생성되어 통합이 어려우나, 잔차에 

적용하면 기존 물리 모델을 유지한 채 부족한 부분만 

보정할 수 있다. 이는 최종적으로 개선된 물리 모델과 

인공지능 모델이 결합 트윈 모델은 다음과 같이 

정리된다: 

𝑆𝑡𝑒𝑎𝑚∗

트윈
 =  𝛼 × 𝐿𝑆𝑇𝑀(𝑥) +  𝛽 × 𝑆𝑡𝑒𝑎𝑚∗

계산
 

          =  𝛼 × 𝐿𝑆𝑇𝑀(𝑥) +  𝛽 × ( 𝑆𝑡𝑒𝑎𝑚
계산

 +  𝐴(𝑥)  + 𝐵𝑎𝑑𝑗⏟        

𝑃𝑦𝑆𝑅 모델

) 

         = 𝛼 × 𝐿𝑆𝑇𝑀(𝑥) +  𝛽 × (𝑊1 × 𝑅𝑒𝑒𝑙평균

+ 𝑊2 × 𝑆𝑖𝑧𝑒평균 +  𝑊3 × 𝑅𝑒𝑒𝑙수분량 

+𝑊4 × 𝑠𝑡𝑜𝑐𝑘𝐹𝑙𝑜𝑤 + 𝐵 +𝑊5 ×재료_농도
+ 𝐵𝑎𝑑𝑗 ) 

𝑆𝑡𝑒𝑎𝑚
실제

에 대한 𝑆𝑡𝑒𝑎𝑚
계산

, 𝑆𝑡𝑒𝑎𝑚
계산

∗ 간의 상관계수는 

각각 0.5427, 0.6464 로, 약 19%의 향상된다. 

 

Ⅳ. 결론 

본 연구는 스팀 사용량 예측 정확도를 향상시키기 위

한 트윈 모델 구조를 제안하고, 이를 위해 물리 모델의 



고도화를 중심으로 분석한다. 특히 기존 물리 모델의 한

계를 보완하기 위해 PySR 기반의 symbolic regression 기

법을 도입하고, 단순한 오차 보정이 아닌 물리적으로 해

석 가능한 수식을 도출함으로써 모델의 해석력과 예측력

을 동시에 확보한다. 제안하는 모델은 데이터 신뢰도를 

기준으로 6 개의 변수를 선별하여 적용하며, 그 결과 상

관계수가 기존 물리 모델 대비 유의미하게(약 19%) 향상

된다. 향후에는 제안한 트윈 모델 구조를 실제 제지 설비 

환경에 적용하고, 운전 조건 변화에 따라 α, β 가중치를 

유연하게 조정할 수 있는 동적 가중치 구조를 도입한다. 

또한 시간에 따른 LSTM 과 물리 모델의 학습을 자동화하

는 강화학습 기반의 최적화 연구를 수행한다. 
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