

Surface code 를 사용한 결함 허용 Non-Clifford 논리 연산

강유진, 정유신, 국성연, Heng Shengyue, 김홍준, 허준*

고려대학교

(yujin20, jeongys604, viviangood, shengyue98, hongjunkim98,*junheo)@korea.ac.kr

Fault-tolerant non-Clifford logical operation using surface code

Kang Yu Jin, Chung You Shin, Kook Sung Yeon, Heng Shengyue, Kim Hong Jun, Heo Jun*

Korea Univ.

요 약

본 논문은 Surface code 를 사용하여 양자 오류 정정 과정이 진행되는 양자 컴퓨팅 시스템에서,

결함 허용(Fault-tolerant) 시스템으로 동작할 수 있도록 Non-Clifford 논리 연산을 수행하는

방법을 제시한다. 제안 기법은 논리 큐빗 구조를 고려하여 주변 ancilla 패치를 활용한다. 따라서

단일 논리 큐빗에 대한 논의에서 나아가, 다수의 논리 큐빗을 처리하기 위해 데이터 블록과

Magic state factory 로 구분되는 통합 양자 컴퓨팅 시스템에서 활용할 수 있다는 의의를 가진다.

Ⅰ. 서 론

양자 컴퓨팅 시스템은 하나의 물리 큐빗이 하나의 정

보를 저장하지 않고 양자 오류 정정 부호를 사용한 논리

큐빗에 정보를 저장한다. 이는 불안정한 물리 큐빗에 오

류가 발생하여 정보가 훼손될 수 있기 때문으로, 논리 큐

빗은 오류가 발생하더라도 정정 능력 이내의 오류라면

자체적으로 고칠 수 있는 능력을 지닌다. 다만 논리 큐빗

단위의 논리 연산이 수행되며, 논리 연산은 부수적인 물

리 큐빗(공간 비용), 신드롬 측정 반복 수(시간 비용)이

소요된다. 그 중 non-Clifford 연산인 T 연산은 가장 많

은 자원을 소요한다. T 연산을 수행하면서 오류 정정 능

력이 감소하지 않으려면 동일한 코드 거리(Code

distance)로 인코딩 된 논리 큐빗을 보조로 사용하며 이

를 ancilla 패치라고 한다. 본 논문은 lattice surgery 를

활용하여, 결함 허용 특성이 유지되면서 non-Clifford T

연산을 수행하는 방법을 제시한다. 이때, 타겟 논리 큐빗

은 논리 큐빗 구조라는 다수의 논리 큐빗이 정렬된 시스

템의 일부이므로, 주변 ancilla 패치의 활용 방안까지 함

께 제시한다.

Ⅱ. 본론

T 연산은 단일 큐빗에 동작하는 연산이지만 논리 큐빗

하나만으로 수행할 수 없다. 그림 1 은 논리 T 연산을 수

행하는 회로를 나타낸 것이다. 타겟 논리 큐빗인 |𝜓⟩ 외

에도 |0⟩와 |𝐴⟩ = (|0⟩ + 𝑒𝑖𝜋/4|1⟩)/√2가 추가로 사용된다

[1-3]. 이때, |𝐴⟩는 magic state distillation 이라는 고비

용의 과정을 통해 높은 신뢰도로 생성되므로 타겟 논리

큐빗과 떨어진 magic state factory 지역에서 생성된다.

Joint ZZ, ZY measurement 는 근거리 연산인 lattice

surgery 를 통해 구현할 수 있지만, 타겟 논리 큐빗과

|𝐴⟩는 바로 근처에 있지 않을 수도 있다.

그림 1. 논리 T 연산 수행 방법 [1-3]

본 연구에서는 논리 큐빗 구조 중에 checkerboard 구

조를 타겟으로 멀리 떨어진 |𝐴⟩와 논리 T 연산을 수행하

기 위해 ancilla 패치를 활용하는 방법을 소개한다[4].

이때 활용되는 ancilla 패치는 bus 라 하며, |𝐴⟩와 연산을

수행하는 역할로만 소모된다. 논리 양자 컴퓨팅은 따라서

Checkerboard 구조로 구성된 data block 과 높은 신뢰

도의 |𝐴⟩를 생성하는 magic state factory, 그리고 |𝐴⟩와

연결해주는 bus 로 구성된다[5].

그림 2 는 4 개의 정보를 처리하는 data block 에서

factory 에서 생성된 |𝐴⟩와 사이에 있는 ancilla 패치를

모두 lattice surgery 로 병합(merge)하여 T 연산을 수행

하는 과정을 제시한다. 각 박스는 하나의 논리 큐빗을 의

미하며 실선은 X boundary, 점선은 Z boundary 를 의미

한다. 분홍색 박스는 data block 에서 정보를 저장하는

data 패치를 의미하며, 회색 박스는 연산 과정에서 소모

되는 ancilla 패치를 의미한다. 연두색 박스는 ancilla 패

치 중에서 bus 로 활용되는 논리 큐빗을 의미한다. |𝜓⟩는

data 패치에 해당되며, |𝐴⟩는 bus 를 통해 data 패치와

떨어진 영역에 위치한다. 논리 T 연산을 수행하기 위해

서 |𝜓⟩와 |𝐴⟩ 사이에 있는 모든 bus 를 병합한다. X

boundary를 마주보는 논리 큐빗은 |0⟩ 로 준비하며 이후

Z boundary 를 마주보는 논리 큐빗은 |+⟩ 로 준비한다.

그림 2. 논리 큐빗 버스 활용방법

그림 2 하단에 있는 그림은 |𝜓⟩와 |𝐴⟩ 사이에 있는 모

든 bus 를 병합한 형태를 나타낸 것으로 |𝜓⟩가 T 연산을

수행하는 중에는 다른 data 패치는 T 연산을 수행할 수

없다. 그러나 모든 병합 연산은 commute 하므로 동시에

수행할 수 있어서 T 연산에는 1𝑑 cycle 의 시간 비용만

소요된다.

Ⅲ. 결론

논리 양자 컴퓨팅 시스템이 결함 허용적으로 동작하기

위해서는 non-Clifford 연산인 T 연산에 소요되는 모든

논리 큐빗은 동일한 코드 거리를 갖도록 구성하고 이를

bus 로 사용해야 한다. Bus 는 lattice surgery 의 병합

과정에서 소모되며 boundary 에 따라 다른 상태로

준비된다. 본 연구는 checkerboard 를 data block 으로

사용한 구조를 예시로 들었으나 tile-based 구조나

row-type 구조에서도 이 같은 방식을 활용할 수 있을

것으로 기대한다[6].

ACKNOWLEDGMENT

본 연구 논문은 정부(과학기술정보통신부)의 재원으로 정보통신

기획평가원의 지원을 받아 수행된 연구임 (No. 2020-0-00014,

결함허용 논리양자큐빗 환경을 제공하는 양자운영체제 원천기

술 개발).

참 고 문 헌

[1] Kang, Yujin, et al. "Magic State Distillation with Reduced

Time Cost." 2024 IEEE International Conference on
Quantum Computing and Engineering (QCE). Vol. 2. IEEE,

2024.

[2] Litinski, Daniel. "A game of surface codes: Large-scale

quantum computing with lattice surgery." Quantum 3

(2019): 128.

[3] Kang, Yujin, et al. "Fault-tolerant quantum computation

using low-cost joint measurements." Quantum
Information Processing 23.5 (2024): 190.

[4] Lao, Lingling, et al. "Mapping of lattice surgery-based

quantum circuits on surface code architectures." Quantum

Science and Technology 4.1 (2018): 015005.

[5] 강유진, et al. "결함 허용 양자 컴퓨터의 논리 큐빗 구조."

한국통신학회 학술대회논문집 (2025): 1725-1726.

[6] Lee, Jonghyun, et al. "Lattice surgery-based Surface

Code architecture using remote logical CNOT operation."

Quantum Information Processing 21.6 (2022): 217.

