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요 약

본 논문은 차량 네트워크 환경에서 발생하는 높은 이동성, 채널의 불안정성, 그리고 비가시선(Non-Line-Of-Sight, NLOS) 조건 등으로 인한 통신
신뢰성 저하문제를해결하기 위한릴레이를 활용한 C-V2X 통신 연구들의 최신 연구 동향을 살펴본다. 구체적으로, 본 논문은 최신 릴레이 통신 연구
들을 수학적도구를활용한 릴레이 통신 기법 연구와 DRL(Deep Reinforcement Learning) 기반 릴레이통신기법들로 구분하여비교·분석하고 한계점
을 살펴본다.

Ⅰ. 서 론

V2X(Vehicle-to-Everything)는 차량과 주변 환경이 실시간으로 정보

를 송수신하면서 자율주행과 교통안전을 지원하는 핵심 기술이다[1]. 3세

대 이동통신 표준화 기구(3GPP)는 4G 기반 LTE-V2X(Long Term

Evolution-V2X)와 5G 기반 NR-V2X(New Radio-V2X)를 규정하였으

며, 두 세대모두기지국을통해자원을할당받는모드(LTE Mode 3 / NR

Mode 1)와 기지국을 거치지 않고 단말끼리 자율적으로 자원을 선택하는

모드(LTE Mode 4/NR Mode 2)를 지원한다. 특히, 기지국의 개입없이 단

말끼리 직접 데이터를 교환하는 기술인 사이드링크(PC5) 기반의 통신 방

식은 낮은 지연시간과높은신뢰성을제공하여 V2X 서비스의성능을좌

우하는 핵심 요소로 주목받고 있다[2],[3].

실제 차량 네트워크 환경에서는 비가시선(Non-Line-Of-Sight,

NLOS) 환경, 고속 이동, 채널 불안정성 등으로 인해 통신의 신뢰성이 크

게 저하되는 문제가 발생한다. 이를 보완하기위한한가지대안으로, 릴레

이(Relay)를 활용한 V2X 통신이 많은 관심을 받고 있다. 릴레이 차량은

송신 차량과 수신 차량 사이에 위치해 데이터를 중계함으로써 신호가 직

접 도달하기 어려운 상황에서도 다중 홉(Multi hop) 경로를 형성하여 보

다 안정적인 데이터 전송을 가능하게 한다[4]. 이에 따라, 통신 커버리지

확장과 신뢰성을향상하기위한효율적 릴레이선택 및자원할당최적화

기법이활발히 연구되고있으며, 본 논문에서는 릴레이기반 V2X 통신 기

법에 관한 최신 연구 연구 동향을 살펴본다. 구체적으로, C-V2X 통신을

위한협력릴레이전략들을 1) 수학적모델·해석 기반릴레이기법연구와

2) 심층 강화 학습(Deep Reinforcement Learning, DRL) 기반 릴레이 기

법 연구로 분류하여 살펴본다.

Ⅱ. 수학적 도구를 활용한 릴레이 통신 기법 연구[5]-[7]

릴레이 기반 C-V2X에서 어떤 차량을 릴레이로 선정하고, 릴레이 및

송수신 링크에시간·주파수자원을어떻게효과적으로배정하는지에따라

시스템의신뢰성이 결정된다. 최근, 이를 해결하기위한다양한수학적도

구를 활용한 연구들이 진행되었다[5]-[8].

문헌 [5]는 초고신뢰 저지연 통신(Ultra-Reliable and Low Latency

Communication, URLLC) 요구사항을 만족하기 위해, 2단계 전송 구조

(Phase 1: Broadcast, Phase 2: Relay) 를 갖춘 릴레이 기반 통신 프로토

콜을제안하였다. 해당 연구는 1차 송신실패시 인근차량의 릴레이를통

한 보완 전송을 허용하는 구조를 수학적으로 모델링 했으며, 확률기하이

론(Stochastic geometry)을 활용해 아웃티지(Outage) 확률을 분석하였다.

시뮬레이션 결과, 일정 데이터 크기 이하 환경에서는 기존 단독 브로드캐

스트(Broadcast) 방식보다 약 25% 이상 아웃티지 확률이 감소하며, 최적

자원 분할 비율(β)은 차량 밀도 및 전송 크기에 따라 비선형적으로 결정

됨을 보였다.

문헌 [6]에서는 NR-V2X Mode 2 환경에서브로드캐스트 신뢰성을 개

선하기 위한 릴레이 기반 전송 프레임워크를 제안하였다. 제안 방식은 송

신차량이 릴레이차량을 미리 지정하고 자원을사전 예약하여전송 지연

을 최소화하는 구조를 채택한다. 또한 릴레이는 다수의 수신 차량을 동시

에 지원할 수 있도록 설계되어, 교차로 비가시 환경에서도 패킷 도달률

(Packet Dissemination Rate, PDR)을 유의미하게 향상시킨다. 시뮬레이

션 결과, 일반적인 블라인드 재전송 방식(BReTX) 대비 교차로 상황에서

정보 확산율이 약 30% 향상됨을 보였다.

마지막으로, 문헌 [7]은 릴레이 차량 선택의 정확도와 전송 신뢰성을

더욱 개선하기 위해 링크 품질 지표(Link Quality Indicators, LQIs)의 방

향별 집계 및 릴레이 차량간 ACK 기반 피드백메커니즘(RReTX-ACK)

을 제안하였다. 차량 간링크품질정보를 방향단위로집계(Average LQI

per Direction) 하여 공유함으로써 오버헤드를 줄이고, 릴레이 수신 확인

을위한 ACK를 통해초기송신 실패에대응하도록설계하였다. 시뮬레이

션 결과, 제안된 방식은 기존 릴레이 기반 재전송 기법(RReTX)에 비해

200m 반경 내 패킷 전달률이 약 8.3% 향상되는 것으로 나타났다.

위와같이, 각 차량이 스스로 주변 채널 상태를 보고 전송할 자원을 판

단하는 방식은고정 임계치기반 센싱에의존해 급변하는트래픽·채널 환

경에 취약하고자원 충돌·오버헤드·복잡도 등의 다중 제약으로인해 저지

연·고신뢰 통신을 보장하기 어려운 한계가 있다. 2단계 고정 분할 구조는

트래픽 변화에 유연하지 못하며 지연을 증가시키고[5], 실제 분산 모드에

서 다중 수신자 자원 충돌 문제가 지속되며[6], LQI·ACK 기반 보완책은

추가 오버헤드 대비 개선 폭이 제한적인 문제를 가진다[7]. 최근, 이러한

한계점을 개선하기 위한 DRL 기반지능형릴레이 선택·자원 제어기법이

활발히 연구되고 있다.



Ⅲ. DRL 기반 릴레이 통신 기법 연구[8]-[11]

실제 도로에서는채널상태, 차량밀도, 트래픽부하가 ms 단위로급변

하므로, 센싱 기반 규칙이나 중앙집중 최적화만으로는 릴레이·자원 결정

을 즉각적으로수행하기어렵다. 이를 개선하기 위해, 최근 로컬관측만으

로 릴레이 노드, 주파수, 전송 전력 등 동적으로 학습해 선택할 수 있어

기존 방식 대비 지연, 충돌, 비효율 문제를 효과적으로 줄일수 있는 DRL

을 활용한 릴레이 통신 기법에 관한 연구가 활발히 진행중이다[8]-[11].

DRL은 에이전트가 주어진 환경과의 상호작용을 통해 최적의 행동 전략

을학습하는 강화학습에딥러닝을결합한기술로 고차원입력을신경망을

통해 표현 학습하고, 이를 기반으로 상태-행동 값 함수 또는 정책 함수를

근사하여 복잡한 환경에서도 효율적인 의사결정을 가능하게 한다

[12],[13].

문헌 [8]에서는 mmWave V2X 환경에서 RSU(Road Side Unit)가 차

량의 로컬 상태 정보(속도, 위치, 큐 상황 등)를 입력으로 받아, 계층형

DQN(Deep Q-Network)을 기반으로 최적의 릴레이 차량과 송신 전력을

동시에 결정하는 중앙집중식 제어 기법을 제안하였다. 제안 방식은 기존

의 링크 예측 기반 방식(Link-Quality-Prediction, LQP) 보다 전송 지연

을 감소시키고 링크 품질 완전 정보 방식(Link-Quality-Known, LQK)

수준의 안정적인 성능을 달성함으로써, DRL을 이용한 릴레이 차량 선택

과 전력 자원 동적 최적화의 가능성을 보여주었다.

문헌 [9]에서는 mmWave V2X 환경에서 릴레이 차량 선택과 빔 관리

를 동시에 최적화하기 위해, 두 개의 적응 임계값(릴레이 교체·빔 재정렬)

을 학습하는 DDPG(Deep Deterministic Policy Gradient) 기반 순차적 의

사결정 정책을 제안하였다. 에이전트는 최근 빔 인덱스와 수신 스펙트럼

효율(beam measurement)을 상태로받아 링크 유지-전송/빔추적/릴레이

차량 교체 중 최적의 행동을 선택함으로써 빔 정렬 오버헤드를 최소화한

다. 시뮬레이션 결과, 사전 채널 정보를 알 수 없는 조건에서도 고정 임계

치휴리스틱대비더높은스펙트럼효율과채널변동대응안정성을달성

하였다.

문헌 [10]에서는 보안성과 실시간성을 동시에 고려하여, 오래된 채널

상태 정보(Outdated Channel State Information)에서도 효과적인 릴레이

차량 선택이 가능하도록 과거 CSI 기반 DQN-RSS(DQN-Relay

Selection Scheme)와 ARMA(Autoregressive Moving Average) 기반 채

널 예측 CSI가 추가된 DQN-RSS-ARMA 프레임워크를 제안하였다. 두

기법 모두 DQN을 이용한 최적 릴레이 선택으로 불완전한 CSI에서도 실

시간 의사결정을 수행한다. 시뮬레이션 결과, DQN-RSS는 기존 ARMA

방식 대비 약 15% 도청 확률을 감소시켰고, DQN-RSS-ARMA는 약

30% 이상의 감소시킴을 보였다.

문헌 [11]에서는 NR-V2X Mode 2 기반 브로드캐스트 환경에서 멀티

에이전트 DQN(MA-DQN)을 적용하여 커버리지확장을 위한릴레이 (차

량 또는 RSU) 선택 및 자원 예약(resource reservation) 전략을 제안하였

다. 각 차량은자체위치및 인접차량정보를바탕으로 차량혹은 RSU를

릴레이로선택하며, 글로벌보상과개별 보상두가지시나리오를 비교·학

습하였다. 시뮬레이션 결과, MA-DQN 기반 릴레이 선택만으로도 커버리

지(300 m) 내 평균 PRR(Packet Reception Rate)이 약 19.3% 향상되었으

며, 여기에 제안된 자원 예약 기법을 함께 적용할 경우 약 44.5% 추가 개

선을 확인하였으며 RSU를 릴레이로 선택할 경우 고정 설치된 RSU가

LoS 경로를 제공하여 평균 PRR이 약 14% 추가 향상됨을 보였다.

Ⅳ. 결론

본 논문에서는 신뢰성 있는 C-V2X 통신을 위한 릴레이 통신 기법 연

구들을 수학적도구를활용한 릴레이 통신기법 연구와 DRL 기반의 릴레

이 통신 기법 연구로 분류하여 살펴보았다. 두 접근 모두 지연 최소화, 신

뢰성 확보, 커버리지확장 측면에서우수한성능을가짐을보였으나, 릴레

이 선택과자원할당문제를분리하거나실제동적도로환경적용한계가

있다. 향후에는 릴레이와 자원을 통합 제어하는 경량 학습 구조와 3GPP

표준 연계를 고려한 실제 환경 연구가 필요하다.
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