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요 약

Massive MIMO(Multiple Input Multiple Output)는 데이터 전송 효율 향상 등 다양한 이점을 제공하지만, 이를 위해서는 정확한 CSI(Channel State
Information)를 획득하는것이반드시필요하다. 그러나, massive MIMO는 사용하는 안테나 수가 급격히 증가함에 따라, 채널 추정을위한 CSI 피드백
역시 급격히 증가하는 문제를 가진다. 본 논문에서는 이를 극복하기 위한 다양한 CSI 피드백 기법들을 소개하고 그 한계점을 살펴본다.

Ⅰ. 서론

정확한 채널 상태정보(Channel State Information; CSI)의 획득은 통신

시스템의성능을 결정하는 중요한요소이다[1],[2]. 많은 수의 송수신 안테

나를 활용하여 데이터 전송 효율을 극대화하는 Massive MIMO(Multiple

Input Multiple Output)는 5G에서 상용화되었으며, 이를 확장한 Extreme

Massive MIMO는 6G의 주요 후보 기술로 주목받고 있다[3],[4]. 기존

MIMO보다 더 많은 수의 안테나 배열을 사용한 massive MIMO는 향상

된 주파수 및 에너지 효율, 간섭의 감소 등의 다양한 장점을 가지지만, 이

를 얻기 위해서는정확한 CSI 확보가필수적이다. 그러나, 안테나배열크

기 증가에 따른 CSI 피드백 오버헤드(Overhead) 증가 문제가 massive

MIMO 통신 성능 결정에 중요한 문제로 대두되었으며, 이러한 오버헤드

를 감소시키기 위한 다양한 CSI 피드백 방법들이 연구되었다. 본 논문에

서는 다양한 CSI 피드백 기법들을 소개하고 그 한계점을 살펴본다.

Ⅱ. 코드북 및 압축 센싱 기반 massive CSI 피드백 기법 [5],[6]

코드북(Codebook) 기반의 피드백 기법[5]은 사전에 정의한 코드를 기반

으로 정보를 주고받는다. 이러한 방식은 코드북의 인덱스만을 전송하기

때문에 낮은피드백오버해드(Overhead)를 가진다는 장점이 있어다양한

목적의 통신에서 널리 사용되고 있다. 그러나 massive MIMO와 같이 많

은 양의 정보를 전송해야 하는 경우 코드북의 크기가 커지게 되고, 이에

따라인코더와 디코더에서코드북의코드를탐색하는데 많은시간과자원

이 투입되어야 하며 코드북을 저장하는 데 사용되는 메모리가 증가하는

한계를 가진다.

다음으로, 압축 센싱(Compress Sensing; CS) 기반의 피드백[6]은 일반

적으로 CSI에서 유의미한 값이 전체 정보 중 아주 적은 부분에만 존재한

다는 점에 착안하여 일부 정보의 손실을 감수하고 압축률을 높이는 방식

이다. 이 방법은코드북기반의피드백과비교해같은양의주파수자원으

로더많은양의 CSI를 전송할수있다는장점이있지만, 정보를압축하는

과정에서 일부 손실을 감안하기 때문에 CSI를 복원하는 과정에서 오차가

발생할 가능성이 있다. 또한, 계산에 소모되는 자원이 증가한다는 단점을

가지며, 채널의 희소성에 기반을 두기 때문에 실제 환경에서 채널이 희소

하지않은상황이 발생하였을때문제가발생할 수있다는한계를가진다.

Ⅲ. 딥 러닝 기반 massive MIMO CSI 피드백 기법 [7]-[12]

딥 러닝을 이용한 피드백은 데이터를 이용하여 학습된 신경망으로 인코

더(encoder)에서 CSI를 압축하고 디코더(decoder)에서 이를 수신하여 원

래의 CSI로 복원한다. 신경망을이용하기때문에비선형적인압축이 가능

하며 학습하는 데이터의 품질에따라압축센싱기반의 방법보다 더 높은

압축률과복원정확도를달성할수있다는장점이있다. 이러한방법은신

경망의 구조에 따라 정확도와 연산량이 달라지기 때문에 이를 고려한 적

절한 설계가 이루어지지 못한다면 성능이 하락할 수 있는 특징을 가진다.

본절에서는딥 러닝기반 CSI 피드백연구를복원 정확도향상과연산량

감소를 목적으로 한 연구로 구분하여 소개한다.

A. 채널 복원 정확도 향상 연구

딥러닝기반 massive MIMO CSI 피드백을최초로제안한연구 [7]에서

는 단말에서 2차원의 CSI를 CNN(Convolutional Neural Network)을 이

용하여 압축한 뒤 벡터로 변환하여 전송하고, BS에서 이를 다시 행렬의

형태로변환한 뒤다시 CNN을 이용하여 압축되기 전의 크기의 CSI로 복

원하는 방식을 제안하였다. 기존의 CS를 활용한 최신 기법들과 비교하였

을때모든 압축률에서 2-3dB의 NMSE가 개선되어딥러닝을이용한 CSI

피드백의 유효성을 증명하였으나, 성능에서는추가적인연구를 통한 개선

의 여지가 있음을 밝혔다.

연구 [7]의 신경망구조를개선한연구 [8]에서는 CNN 커널의 크기를 증

가시키고 CSI의 적은 부분만이 의미 있는 값을 가진다는 점에 착안하여

비 균일 양자화를 적용하였다. 또한, 양자화 후 복원된 벡터에서 왜곡을

줄이기 위한오프셋 네트워크를이용한 구조를통해 1/4, 1/16의 압축률에

서 [5] 대비 각각 10.01dB, 5.49dB의 NMSE 향상을 달성하였다. 단 해당

과정에서 초당 연산량이 각각 4.47배, 5.90배 증가하였다.

연구 [9]는 앞선 연구 [7], [8]과 동일한 CNN 구조의 인코더를 사용하면

서 디코더는 트랜스포머(Transformer) 기반의 multi head attention 구조

를사용하여디코더가 CSI의 장기적인의존성을파악할 수있도록함으로



써 성능 향상을 유도했다. 그 결과 연구 [6] 대비 1/4, 1/16의 압축률에서

각각 5.01dB, 0.86dB의 NMSE 향상을 달성하였으나, 초당 연산량 또한

1.45배, 1.48배 증가하였다.

연구 [10]에서는 유효한 CSI를 오토인코더(Autoencoder)를 사용한 매핑

(Mapping)을 통해 기존보다 낮은 차원으로 압축하는 방식을 사용하였다.

연구 [7] 대비 1/4의 압축률에서는 약 8%의 연산량 증가로 3dB 수준의

NMSE 개선이 있었으나 1/16의 압축률에서는 같은 연산량에서 9.6dB의

NMSE 향상이 있어 적은 연산량의 증가만으로 높은 압축률에서 복원 성

능을 개선하였다.

B. 채널 압축 및 복원 연산량 감소 연구

일반적으로 실제 시스템에서 단말은 초당 연산 성능 및 소비전력 등이

제한되어 있다는 사실을 고려할 때, 연산량은 중요하게 고려되어야 하는

요소이다.

연구 [11]에서는 CSI 피드백의 성능이 인코더의 성능에 크게 의존하며,

인코더에서의 압축 손실을 줄이는 것이 디코더의 복원 성능에 영향을 끼

친다는사실과 인코더구조의고도화는단말의 연산량을증가시킨다는문

제를 발생시킨다는 문제를 모두 고려하였다. 이에 따라 단말에서 CSI의

물리적성질을 이용해정보를최대한보존하면서 경량화된모델을설계했

다. 이를 위해 인코더에서 CSI를 실수와 허수 부분으로 구분하지않고 복

소수 형태로 신경망에 입력하여 연산량을 줄임과 동시에 신호의 진폭과

위상간의 물리적관계를 보존하여 CSI 복원 성능의 향상을 가져왔다. 또

한, 신호가 전달되는 경로마다 신호의 위상과 지연시간이 달라 경로의 클

러스터들이 각각 다른 해상도를 가지기 때문에 신경망이 해상도가 높은

클러스터에 집중할 수 있도록 디코더에서 attention 구조를 사용했다. 그

결과 1/8, 1/16, 1/32의 압축률에서 연구 [8] 대비 평균적으로 약 2dB의

NMSE 손실이 발생했지만 초당 연산량을 각각 12.8%, 10.8%, 9.8% 수준

으로 줄이는 것에 성공했다.

연구 [12]에서는 연산량을 대폭 줄이면서도 피드백 성능을 유지하기 위

해 딥러닝 네트워크의 학습을 CSI의 압축과 복원이 아닌 연산 최적화 문

제로 재정의하는 접근을 제안하였다. 기존 딥 러닝 기반의 CSI 피드백에

서는 인코더와 디코더를 하나의 블랙박스로 보고 end-to-end 방식으로

학습을 수행해 왔다. 그러나 [12]에서는 딥 러닝을 사용하여 네트워크의

각 구성 요소가 갖는 구조적 특성과 CSI 행렬의 통계적 성질을 분석함으

로써압축률과 NMSE 사이의균형을최적화한다. 특히, 인코더부분의 연

산량을 감소시키기 위해 경사 하강법을 사용하지 않고 경량화된 고정 연

산을 사용하여 단말의 연산을 단순화시켰고, 디코더에서는 복원 성능을

보완하기 위해 attention 기반 구조를 적용했다. 이와 더불어, CSI의 희소

성과 구조적 상관성을 활용한 특화된 손실 함수 설계를통해모델이 효율

적으로 학습되도록 유도하였다. 시뮬레이션 결과, 다양한 압축률 환경에

서 기존 딥 러닝을 사용한 SOTA 구조들과 유사한 NMSE를 유지하면서

연구 [8] 대비 연산량을 1/6 수준으로 감소시켰다.

Ⅳ. 결론

본 논문에서는 딥러닝 기반 massive MIMO CSI 피드백의 감소에 대한

최신 연구 결과들을 통해, 딥러닝 알고리즘의 CSI 복원 정확도와 연산량

의 상충 관계와 최신 연구 동향을 알아보았다. 딥 러닝 모델의 고도화로

요구되는연산량증가와단말및기지국의실제성능을고려할때, 압축률

증가에 따른 정보 손실로 인한 정확도 감소는 5G와 더 많은 수의 안테나

배열을 사용하는 6G에서도 중요한 연구 과제로 남아있다.
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