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요 약

본 논문은 Slotted ALOHA 프로토콜로 동작하는 무인항공기(Unmanned Aerial Vehicle; UAV) 군집비행 네트워크에서의 패킷

통신 충돌 확률을 줄이고, 각 UAV의 정보 도달 거리를 최대화하기 위해, 계층적 Q-learning(Hierarchical Q-learning)을 적용한 분산 제어

기반 통신슬롯및 송신전력 제어 알고리즘을제안한다. 제안된 알고리즘은외부 루프에서의 송신전력 제어와내부루프의 송신 슬롯 선택을 분리하여

학습함으로써, 각 UAV의 통신 환경에 따라 최적의 슬롯과 전송 반경을 선택할 수 있도록 설계되었다. 모의실험 결과 기존 방식 대비 효율적으로

전송 충돌률을 감소시켜, 슬롯 활용률과 통신 안정성이 개선됨을 확인했다.

Ⅰ. 서 론

무인 항공기(Unmanned Aerial Vehicle; UAV)는 초기 군사적 목적으로

개발되었으나, 최근에는 재난 감시, 물류 배송, 환경 관측 등 다양한 민간

분야에서 활용되고있다. 특히, 복수의 UAV가 협력하여임무를수행하는

군집비행은높은 기동성과유연성을바탕으로효율성을 극대화할수있는

기술로 주목받고 있다[1], [2]. 그러나 UAV는 소형 기체의 특성상 제한된

배터리 용량과 환경 변화에 대한 민감도로 인해 통신 충돌이나 기체 간

간섭에 취약하며, 이는 군집 전체의 안정성과 임무 성공률에 부정적인 영

향을 미칠 수 있다.

본 논문에서는 군집 UAV 네트워크에서 UAV간 충돌방지를 위해서 자

신의 위치 정보를 불특정 주변 UAV들에게 Sotted ALOHA 프로토콜로

전송(방송)하는 환경을 고려한다. 여기서, 각 UAV가 자율적으로 판단하

여 통신 슬롯과 전송 반경, 즉 송신전력을 결정하는 분산 제어 방식을 기

반으로한다. 대표적인분산제어 방식 중하나인 ALOHA는 간단한구조

를 가지고 있으나 슬롯 충돌 가능성이 높고 노드 수 증가에 따른 성공률

저하 문제가 존재한다. 이를 개선하기 위해 슬롯 기반 전송 구조인

Slotted ALOHA가 제안되었지만, 여전히 임의 슬롯 선택으로 인한 충돌

발생 가능성은 완전히 해소되지 않았다.

이에 본 논문에서는 전체 UAV의 수가 선택가능한 slot의 수 보다 작은

환경도 송신 전력을 낮춰서 공간 재활용을 통하여 충동을 회피할 수 있는

Slotted ALOHA 학습 알고리즘을제안하고자 한다. 즉, 다양한 네트워크

환경에서 UAV 간 통신 충돌을최소화하고 슬롯활용률을 개선하기위해,

UAV를 에이전트로 정의하는 계층적 강화학습 구조를 제안한다.

Ⅱ. 시스템 모델

본 논문에서는 그림 1과 같이 군집비행 중인 다수의 UAV가 일정 지역

내에서위치 정보를주기적으로교환하는통신 환경을가정한다. 각 UAV

는 비행 중 일정 시간 간격으로 자신의 위치 정보가 담긴 패킷을 주변

UAV들과 공유해야 한다. UAV 간 통신은 슬롯 기반 프레임구조를 따르

며, 프레임은 그림 2와 같이 개의슬롯으로 구성되어 있다. 두 개의

프레임이 하나의 수퍼프레임을 구성하게 된다. 각 UAV는 프레임마다 하

나의 슬롯을 선택하여 자신의 패킷을 전송하며, 다른 UAV는 이 정보를

수신한다. 각 수퍼 프레임의 첫 프레임을 전송한 후 UAV는 둘째 프레임

에서 첫 프레임과동일한 슬롯을선택하여자신의 위치 정보와첫 프레임

의 정상 수신 여부를 알려주는 ACK 신호를 전송한다.

첫째 프레임 구간동안 UAV i는 자신이 성공적으로수신한 패킷을기반

으로, 패킷 송신한 UAV의 인덱스와 해당 UAV가 사용한 슬롯 정보를포

함한 집합   과 집합  을 생성한다.

둘째 프레임 구간에서 각 UAV는 첫프레임과 동일한 슬롯및 전송 반경

을 갖고 자신의 위치 정보와 함께  을 같이 전송한다. 그리고,

UAV i는 다른 UAV들로부터 수신한  인  에 자신의 인텍

스인 “i”가 포함된 들로 구성된  를 구성한다. 즉,

   k ∣ i∈P r x k이다. 이 경우, 한 수퍼 프레임을
마친 후에 UAV i는 자신이 전송한 패킷이 다른 수신 UAV에서 충돌이

생겼는지를   와  를 비교하여 파악할 수 있다. 즉,

     이면,  의모든 UAV들이자신의정보를

잘 수신했다는 것을 의미한다. 반면에,    이면,

 에는 포함되지만,  에 포함되지 않은 UAV는 패킷

충돌로 인해서 UAV i의 위치 정보를 수신하지 못한 것을 의미한다.

또한, 이와 같은 과정을 통하여 다른 UAV들이 충돌없이 사용 중인 슬롯

을 확인할 수 있으며, 이 경우 학습 과정에서 해당 슬롯을 피하는 방식으

로 학습의 수렴 속도를 향상 시킬 수 있을 것이다. 그리고 충돌을 완벽하

게 회피하였다면 다음 에피소드에 자신이 이전 수퍼프레임에서 선택했던



슬롯을 동일하게 선택하는 정책 역시 수렴 속도 향상에 도움이 될 수 있

다.

그림 1.

그림 2.

학습의 에이전트(agent), 상태(state), 행동(action), 정책(policy), 보상

(reward)의 요소를 다음과 같이 정의했다. 여기서 t는 현재 에피소드, 수

퍼프레임을 의미하다.

-에이전트: 각의 UAV는 모두 독립된 에이전트로 동작한다.

-상태( ): 이전 에피소드에서 UAV가 선택한 행동

       (1)

-행동()

·내부 루프 행동: UAV가 현재 에피소드에서 사용할 슬롯

 ∈   (2)

·외부 루프 행동: UAV가 패킷을 전송할 전송 반경

 ∈  (3)

여기서, 를최대통신거리로가장멀리있는 UAV까지정보를전

달할 수 있는 거리를 의미한다.

-정책: Decaying epsilon greedy 정책을 사용하였다. 해당정책은아래의

수식과 같이 동작한다.

 
argmax ∈     
   

(4)

     
   (5)

여기서,   는 초기값을, d는 감소 속도를 조절하는 파라미터이다.

-보상()

·내부 루프

 
   if  
  if    

(6)

·외부 루프

   ×  (7)

여기서,  와  는 해당 UAV가 ACK을 통해 계산한 충돌 패

킷의 수와 전송 성공 패킷의 수를 각각 나타낸다. 또한 외부 루프는 일정

주기( )를 기준으로, mod  = 0을 만족할때만학습을수
행하도록 설정하였다. 제안한 계층 강화학습 기반 구조의 유효성을 검증

하기 위해 MATLAB을 통해 모의실험을 진행하였으며 그림3과 같은 파

라미터를 사용하였고 총 50회 모의실험을 반복했다. 의 경우 200

에서 시작하여 에피소드가 진행됨에 따라 점차 감소하여 최종적으로 2에

수렴하게 조정하였다. 또한 Slotted ALOHA 및 Q-learning 방식과의 비

교를 통해 제안한 방식의 유효성을 검증하고자 했다.

그림 3.

그림 4.

그림 4는 50회 반복 실험을 통해 얻은 평균 충돌 확률을 나타낸 것으로,

각 에피소드에서충돌이발생한 UAV 수를전체 UAV 수로나눈값을기

반으로 충돌 확률을 정의하였다.

실험 결과기존 Slotted ALOHA 방식은일정 수준 이상의 높은 충돌 확

률이 지속되었고, Q-learning 기법은초기에는충돌을일부완화하였으나

일정 수준 이하로 충돌을 회피하지 못했다. 그러나 제안한 알고리즘은 50

회 반복에서 모든 경우 충돌을 회피하지는 못했으나, 전체적으로 가장 낮

은 충돌 확률을 가지며 우수한 성능을 보였다.

Ⅲ. 결론

본 논문에서는 UAV 군집비행의 안정성 향상을 위한 계층 강화학습을

적용한 Slotted ALOHA 기반알고리즘을 제안하였다. 제안한 알고리즘은

노드 수가 많아질수록 충돌 확률이 급격히 증가하는 기존 Slotted

ALOHA 방식의한계를개선하고자하였으며, 모의실험결과를통해해당

알고리즘이 효과적으로 동작함을 확인할 수 있었다. 그러나 실제 통신 환

경에서는 다수의 UAV가 협력하여 임무를 수행하는 상황뿐만 아니라, 일

부 UAV만이 독립적으로 동작하는 상황도 고려 되어야 한다. 또한, UAV

의 수가 동적으로 변하거나 배치가 변화하는 등 유동적인 네트워크 환경

에는 슬롯의 재할당 및 새로운 학습이 필수적이다. 향후 연구에서는 이러

한다양한실제적용환경을반영하여, 유연하고환경변화에강인한알고

리즘을 제시할 계획이다.
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