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요 약

본 논문에서는 다양한 모델에 ReRAM 기반 소자를 매핑하고, Oxford 102 Flower, Stanford Cars, Food-101과 같은 고해상도 데이터 세트에서 패턴
인식 성능을 분류했다. 또한, 학습 시 발생할 수 있는 불안정성을 해결하기 위해 두 가지 핵심 전략을 제안한다. 첫째, ReRAM 소자의 표현 범위를
확장하고안정성을 높이기 위해 Z-score 표준화와중복 조합 방식을 도입한다. 둘째, 기울기 크기에 따라가중치업데이트 여부를 확률적으로결정하는
새로운 업데이트 메커니즘을 제시하여 학습 안정성을 확보하고자 한다. 제안하는 확률적 업데이트 방식은 CIFAR-10 데이터 세트에서 90.52%를 달성
하며 가장 우수한 분류 정확도를 보여준다. 또한 다양한 대규모 모델 및 데이터 세트에서도 견고한 성능을 입증한다.

Ⅰ. 서 론

최근 ReRAM 기반 뉴로모픽 소자를 이용한 패턴인식 연구가 활발히 진

행되고 있다[5, 6]. 그러나 기존 연구들은 작은 네트워크와 데이터 세트에

국한되어 왔다. 이러한 제한적인 환경에서의 성공에도 불구하고, 실질적

인 응용을 위해서는 대규모 네트워크와 데이터 세트에서의 성능 검증이

필수적이다.

본 연구에서는 ReRAM 기반 뉴로모픽 소자의 실질적 응용 가능성을 확

대하기 위해, 기존 연구의 한계를 보완하고자 한다. 구체적으로 ReRAM

기반 뉴로모픽 소자를 대규모 신경망 구조에 매핑하고, Oxford 102

Flower [2], Stanford Cars [8], Food-101 [1]과 같은 대규모 데이터 세트

를 활용하여 패턴인식 성능을 분석한다. 이를 통해 ReRAM 기반 뉴로모

픽 컴퓨팅이 대규모 연산환경에서도 견고한 성능을 유지할 수 있는지검

증한다. 더 나아가, 대규모 네트워크 구현 및 학습 과정에서 발생할 수있

는 불안정성을 해결하기 위한 ReRAM 기반 소자값 표현 범위 확장과 새

로운확률기반업데이트방식을제시하고, 이러한접근방식이학습 안정

성 확보 및 성능에 미치는 영향을 분석하고 검증한다.

Ⅱ. 본 론

2.1. 소자 값의 안정성과 표현력 향상

ReRAM 소자의 저항값 변화를 통해 신경망의 가중치를 업데이트하는

방식은 효율적인 인공지능 하드웨어 구현에 대한 잠재력이 있지만, 값이

매우 작다는 소자 특성으로 인해 학습 과정에서 어려움이 존재한다. 일반

적으로 ReRAM 소자의 값은 매우 작기 때문에 가중치에 바로 사용하면

값의 변동 폭이 작아 효과적인 학습이 어려울 수 있다. 이러한 문제점을

해결하고 ReRAM 기반 신경망의 학습 성능을향상하기 위해식 (1)에 나

와 있는 Z-score 표준화 방법을 도입한다.

  (1)

여기서 는 번째 소자의 저항값, 는 전체 저항값의 평균, 는 전체
저항값의 표준편차를 나타낸다. Z-score 표준화를 통해 소자들은 평균이

0, 표준편차가 1인 분포를 가지게 된다.

이후, 소자에서 시냅스 가중치가 증가하는 특성과 감소하는특성에서 표

현될 수 있는 값들을 활용하여 새로운 값을 생성한다. 구체적으로 임의의

두 표준화된 소자 값 와 를 더하여 새로운 값으로 사용했다. 이러한
중복 조합 방식을 통해 원래 소자들이 가질 수 있는 다양한 값을 표현할

수 있도록 한다.

2.2. 확률적 가중치 업데이트 메커니즘

일반적으로 인공신경망은 기울기를 기반으로가중치를 연속적으로 조정

하며 학습한다. 반면, 소자를 이용한 학습에서는 가중치 조정이 연속적이

지 않고 이산적으로 이루어진다. 이러한 이산적인 가중치 업데이트 방식

은 최적값에 도달하기 어렵다. 따라서 최적값에 효과적으로 수렴하는 것

이 중요하다. 위 문제를 완화하고 안정적인 학습을 하기 위해, 본 연구에

서는기울기의크기에 따라가중치업데이트여부를 확률적으로결정하는

메커니즘을 제안한다.

 maxminmin
(2)

식 (2)는 가중치에대한기울기를계산한후 min-max 정규화를통해 0에

서 1 사이의 범위 값으로 변환하고, 이를 확률로 사용하는 과정을 나타낸

다. 여기서 는 번째 가중치에 대한 기울기 값, min와 max
는각각전체기울기값의최솟값과최댓값을나타낸다. 이렇게얻어진확

률값 는해당가중치를업데이트할확률로사용한다. 즉, 기울기의크기
가 클수록 업데이트될 확률이 높아지고, 기울기의 크기가 작을수록 업데

이트될 확률이 낮아진다. 이는 학습에 큰 영향을 미치는 가중치들은 우선



적으로 업데이트하고, 작은 변화를 보이는 가중치들의불필요한업데이트

를 줄여 학습의 안정성을 확보하는 데 기여한다.

2.3. 실험 결과

제안하는 업데이트 방법에 대한 성능을 검증하기 위해, 이전 연구 [5, 6]

에서 채택한 모델을 사용하여 CIFAR-10 데이터 세트에서 확률적 업데이

트방법에따른간단한 이미지분류 실험을수행했다. 모든학습은 200 에

폭, 배치 크기 256으로 동일하게 설정하고, 각방법의 최고 분류 정확도를

비교했다. 표 1에서 확인할수 있듯이, 제안된 min-max 정규화기반 확률

적 업데이트를 적용했을 때 M/ATA/S 소자와 Mxene 소자에서 각각

90.52%와 90.36%의 가장높은분류정확도를달성했다. 이는 이산적인방

법 대비 향상된 결과이며, 동시에 학습 안정성 또한 보여주었다. 이러한

결과는 동일한 딥러닝 네트워크 환경에서 제안된 방법이 향상된 성능을

제공할 수 있음을 보여준다.

그러나이전 연구 [5, 6]에서 사용된 딥러닝 네트워크는비교적단순하며

실제이미지 분류작업에서일반적으로사용되는 모델의복잡성을반영하

지 않는다. 따라서 표 1에 나와있는 실험 결과만으로 제안되는 업데이트

방식이 다양한 네트워크 구조에서 효과적으로 작동하는지 평가하기 어렵

다. 따라서, 제안하는방법의일반적인적용가능성을평가하기위해, 고해

상도 이미지 분류에 사용되는 GoogleNet [7], ResNet34 [3], ResNet50

[3], DenseNet121 [4] 딥러닝 네트워크로 추가 실험을 진행했다. 해당 실

험은 대규모 고해상도 데이터 세트 (Oxford 102 Flower, Stanford Cars,

Food-101)를 사용했다. 표 2의 결과에서 볼 수 있듯이, 제안된 업데이트

방법은 데이터 세트 관계없이 일관되게 높은 정확도를 보여주며

min-max 정규화 업데이트 방식의 견고성과 학습 안정성을 입증했다.

Ⅲ. 결 론

본 논문에서는 ReRAM 기반 뉴로모픽 시스템의 패턴 인식 성능을 다양

한 딥러닝 네트워크와 고해상도 데이터 세트에서 검증하고, 학습 안정성

을위한새로운방법을제안했다. 이를 통해이산적인가중치조절과정에

서발생할수있는불안정성을완화하고, 기울기가큰 가중치 위주로 업데

이트를 수행하여 학습의 안정성을 확보했다. 제안된 방법은 다양한 모델

과 고해상도 데이터 세트에서도 안정적인 동작과 높은 분류 정확도를 달

성했다. 이는 본 연구에서 제안한 기법들이 ReRAM 기반 뉴로모픽 컴퓨

팅시스템에 학습안정성을효과적으로개선하여 뉴로모픽컴퓨팅의발전

에 기여할 것으로 기대한다.
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네트워크

정확도 (%)
데이터 세트

Oxford 102

Flower
Stanford Cars Food-101

M/AT

A/S
Mxene

M/AT

A/S
Mxene

M/AT

A/S
Mxene

GoogleNet 79.71 80.93 70.68 63.97 77.74 77.68

ResNet-34 84.60 82.64 63.50 59.61 79.22 78.75

ResNet-50 83.74 81.05 77.04 74.16 79.54 78.32

DenseNet-121 83.99 84.84 70.65 73.02 78.19 78.93

표 2. 다양한 모델 및 데이터 세트별 성능 비교

업데이트 방법
정확도 (%)

M/ATA/S Mxene

이산형 10.00 88.69

p=0.25 90.50 89.88

p=0.5 77.17 90.10

p=0.75 19.59 89.62

cdf 46.69 89.72

min-max 정규화 90.52 90.36

표 1. 업데이트 방법별 성능 비교


