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Abstract 

 
This study explains a nonlinear optimization problem in home digital twin energy trading. By considering battery degradation 

costs, the objective function is to minimize energy trading costs with power balance constraint. This paper simulated the 

optimization problem across five different scenarios of using batteries or solar panels for prosumers. The results show that the 

use of batteries can provide benefits to prosumers compared to without batteries. Installation using large batteries or with large 

solar panels is a better scenario because it makes the total cost lower. Although self-power consumption is larger when using high 

batteries, prosumers get the larger revenue in these scenarios by more actively taking part in energy trading.  

 

I. Introduction 

Home energy trading digital twin is a virtual model that 

replicates a physical energy trading system of house [1], 

usually implements Artificial Intelligence (AI) to optimize 

energy trading operations [2]. Home energy management 

system (HEMS) optimizes energy consumption of individual 

houses and reduces electricity costs in the energy trading 

process [3]. This study implements optimization to get 

optimal energy cost values and apply to five scenarios. 
 

II. Method 

A home energy trading digital twin would use non-linear 

optimization to balance energy generation, consumption, 

storage, and trading with the grid. The goal is to minimize the 

total cost (or maximize profit) over a planning horizon T. 

min ∑[𝐶𝑔𝑟𝑖𝑑(𝑡)𝑃𝑏𝑢𝑦(𝑡) −  𝑅𝑔𝑟𝑖𝑑(𝑡)𝑃𝑠𝑒𝑙𝑙(𝑡) + 𝐶𝑑𝑒𝑔(𝑃𝑏𝑎𝑡𝑡(𝑡), 𝑆𝑜𝐶𝑏𝑎𝑡𝑡(𝑡))]

𝑇

𝑡=1

 

 

(1) 

 𝐶𝑔𝑟𝑖𝑑(𝑡) represents the time-varying grid electricity price 

for buying and 𝑅𝑔𝑟𝑖𝑑(𝑡) is the time-varying feed-in tariff for 

selling. 𝑃𝑏𝑢𝑦(𝑡) express power purchased from the grid and 

𝑃𝑠𝑒𝑙𝑙(𝑡) is power sold to the grid. 𝐶𝑑𝑒𝑔 captures the battery 

degradation costs function based on power rates 𝑃𝑏𝑎𝑡𝑡(𝑡) and 

state of charge 𝑆𝑜𝐶𝑏𝑎𝑡𝑡(𝑡) of battery.  
 
𝑃𝑔𝑒𝑛(𝑡) +  𝑃𝑏𝑢𝑦(𝑡) + 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑡) = 𝑃𝑙𝑜𝑎𝑑(𝑡) + 𝑃𝑠𝑒𝑙𝑙(𝑡) + 𝑃𝑐ℎ𝑎𝑟𝑔𝑒(𝑡) (2) 

 The power balanced constraint in (2) maintains the 

physical law of energy conservation, ensures that the total 

energy supply equals the total energy demand at every time 

step in the system. Battery degradation formula captures the 

battery degradation costs [4], expressed in (3) using 

degradation model parameters 𝛼1 through 𝛼4. 

 

𝐶𝑑𝑒𝑔(𝑃𝑏𝑎𝑡𝑡(𝑡), 𝑆𝑜𝐶𝑏𝑎𝑡𝑡(𝑡)) = 𝛼1|𝑃𝑏𝑎𝑡𝑡(𝑡)| + 𝛼2𝑃𝑏𝑎𝑡𝑡(𝑡)2 + 𝛼3𝑒−𝛼4𝑆𝑜𝐶(𝑡) (3) 

Ⅲ. Result and Analysis 

 
Fig 1. Battery state of charge in one day (24 hours). 

 

Using the Python code and based on one year energy data 

provided by Grida Energy's digital twin simulator [5], this 

paper conducted a simulation following the objective 

function and constraints. The simulation defines five 

scenarios, and SoC batteries in one day described in Fig.1. 

 
Fig 2. Selling and buying process of energy trading.   



 
Fig 3. Total cost comparison based on (1) for all scenarios. 

 

All scenarios join the energy trading and doing import or 

export energy from grid as shown in Fig.2. Based on power 

generation or consumption, the total cost calculation from 

(1) gives the simulation result in Fig. 3. No battery scenario 

has the highest cost. The negative value of total cost means 

the prosumer has the benefit of selling energy from higher 

batteries or with higher solar panels. 

 
Table 1. The simulation summary for each scenario. 

Scenario Solar 

(kW) 

Battery 

(kWh) 

Total 

Cost ($) 

Consumption 

for self (%) 

Baseline 5 5 0.80 69.55 

High solar 10 5 0.52 73.97 

High battery 5 10 -0.82 78.86 

High solar + 

high battery 

10 10 -0.62 77.76 

No Battery 5 0.01 3.53 43.87 
 

 

The result summary of simulations is in Table 1, showing 

the highest self-power consumption is a high battery scenario. 

Negative total cost (gain a benefit) only achieved by installing 

the battery as shown in Fig.4, which only uses high solar 

without battery, still gains the cost for the prosumer.  

 

 
Fig 4. Pareto analysis comparison across scenarios. 

 

The radar chart in Figure 5 also displays the simulation 

summary for all scenarios. The larger polygon area means 

better configuration performance in energy trading. More 

active in energy trading means more participation in export 

or import energy at load peak time in the power grid. Even 

self-consumption is higher, the best scenario, which is 

using high battery or adding high solar panels, can give the 

better cost saving or gain the higher revenue. 

 
Fig 5. Performance results for all scenarios. 

IV. Conclusion  

The total cost formula expresses nonlinear optimization as 

the objective function by considering battery degradation cost 

and power balance constraint. This paper presents a 

simulation of a nonlinear optimization problem, encompassing 

five different scenarios where prosumers use either batteries 

or solar panels. No battery scenario shows the highest total 

cost in simulation results with the lowest self-power 

consumption. Using a high battery is the best scenario 

because the total cost is the lowest even though the self-

power consumption is the highest. Solar energy generation by 

prosumers can provide a revenue stream and lead to a 

reduction in home electricity costs.   

ACKNOWLEDGMENT  

This paper (author) is a study supported by the Ministry of 

Education of the Republic of Korea and the National Research 

Foundation of Korea (NRF-2023S1A5C2A07096111).   

REFERENCES 

[1]  J. Huang, D. D. Koroteev, and M. Rynkovskaya, "Machine 

learning-based demand response in PV-based smart 

home considering energy management in digital twin," 

Solar Energy, vol. 252, pp. 8–19, 2023. doi: 

10.1016/j.solener.2023.01.044. 

[2]  Q. A. Sias, R. Gantassi, and Y. Choi, "Multivariate 

bidirectional gate recurrent unit for improving accuracy 

of energy prediction," ICT Express, vol. 11, no. 1, pp. 

80–86, 2025. doi: 10.1016/j.icte.2024.10.002.  

[3]  M. Zedan, M. Nour, G. Shabib, Z. M. Ali, A. Alharbi, and 

A. A. A. Mohamed, "Techno-economic assessment of 

peer to peer energy trading: an Egyptian case study," 

IEEE Access, vol. 12, pp. 58317–58337, 2024. doi: 

10.1109/ACCESS.2024.3387850.  

[4]  B. Han, Y. Zahraoui, M. Mubin, S. Mekhilef, T. Korõtko, 

and O. Alshammari, "Distributed optimal storage 

strategy in the ADMM-based peer-to-peer energy 

trading considering degradation cost," J. Energy Storage, 

vol. 96, p.112651, 2024. doi:10.1016/j.est.2024.112651. 

[5]  Q. A. Sias, R. Gantassi, Y. Choi, and J. H. Bae, 

“Recurrence multilinear regression technique for 

improving accuracy of energy prediction in power 

systems,” Energies, vol. 17, no. 20, p. 5186, 2024. doi: 

10.3390/en17205186. 

https://doi.org/10.1016/j.solener.2023.01.044
https://doi.org/10.1016/j.icte.2024.10.002
https://doi.org/10.1109/ACCESS.2024.3387850
https://doi.org/10.1016/j.est.2024.112651
https://doi.org/10.3390/en17205186

