A Study on Nonlinear Optimization of Home Energy Trading Digital Twin

Quota Alief Sias, Laura Kharatovi, Rahma Gantassi, Yonghoon Choi

Chonnam National University

{g4sias, laurakh, rahmag, yh.choi}@jnu.ac.kr

T AdA A "Ad EQ9 vAF HA3 dF T
Aopz FoEL )2, shetEd] g, e gEnl, HeF

Ao ehal

Abstract

This study explains a nonlinear optimization problem in home digital twin energy trading. By considering battery degradation
costs, the objective function is to minimize energy trading costs with power balance constraint. This paper simulated the
optimization problem across five different scenarios of using batteries or solar panels for prosumers. The results show that the
use of batteries can provide benefits to prosumers compared to without batteries. Installation using large batteries or with large
solar panels is a better scenario because it makes the total cost lower. Although self-power consumption is larger when using high
batteries, prosumers get the larger revenue in these scenarios by more actively taking part in energy trading.

I. Introduction

Home energy trading digital twin is a virtual model that
replicates a physical energy trading system of house [1],
usually implements Artificial Intelligence (AI) to optimize
energy trading operations [2]. Home energy management
system (HEMS) optimizes energy consumption of individual
houses and reduces electricity costs in the energy trading
process [3]. This study implements optimization to get
optimal energy cost values and apply to five scenarios.

1I. Method

A home energy trading digital twin would use non-linear
optimization to balance energy generation, consumption,
storage, and trading with the grid. The goal is to minimize the
total cost (or maximize profit) over a planning horizon T.

T
minz[cgrid(t)Pbuy(t) - Rgrid (t)Psell(t) + Cdeg(Pbatt(t)rsocbatt(t))] (1)
t=1

Cgria(t) represents the time-varying grid electricity price
for buying and Rgriq(t) is the time-varying feed-in tariff for
selling. Ppyy (t) express power purchased from the grid and
Pgey(t) is power sold to the grid. Cgeq captures the battery
degradation costs function based on power rates Ppqe:(t) and
state of charge SoCyq::(t) of battery.

F}]en(t) + Pbuy(t) + Pdischarge(t) = Pload(t) + Psell(t) + Pcharge(t) (2)

The power balanced constraint in (2) maintains the
physical law of energy conservation, ensures that the total
energy supply equals the total energy demand at every time
step in the system. Battery degradation formula captures the
battery degradation costs [4], expressed in (3) using
degradation model parameters «, through a,.
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II. Result and Analysis

Battery State of Charge Comparison

—— Baseline

= High Solar

= High Battery

—— High Solar & Battery
06 No Battery

08

0.4

State of Charge

02

05-08 00 05-08 06 05-08 12 05-08 18 05-09 00 05-09 06 05-09 12 05-09 18 05-10 00
Time

Fig 1. Battery state of charge in one day (24 hours).

Using the Python code and based on one year energy data
provided by Grida Energy's digital twin simulator [5], this
paper conducted a simulation following the objective
function and constraints. The simulation defines five
scenarios, and SoC batteries in one day described in Fig.1.
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Fig 2. Selling and buying process of energy trading.



Total Cost Comparison Across Scenarioia 5

(8]

Total Cost ($)

@.Qs
Fig 3. Total cost comparison based on (1) for all scenarios.

All scenarios join the energy trading and doing import or
export energy from grid as shown in Fig.2. Based on power
generation or consumption, the total cost calculation from
(1) gives the simulation result in Fig. 3. No battery scenario
has the highest cost. The negative value of total cost means
the prosumer has the benefit of selling energy from higher
batteries or with higher solar panels.

Table 1. The simulation summary for each scenario.

Scenario Solar | Battery Total Consumption
kW) | (&kWh) | Cost($) for self (%)
Baseline 5 5 0.80 69.55
High solar 10 5 0.52 73.97
High battery 5 10 -0.82 78.86
High solar + 10 10 -0.62 77.76
high battery
No Battery 5 0.01 3.53 43.87

The result summary of simulations is in Table 1, showing

the highest self-power consumption is a high battery scenario.

Negative total cost (gain a benefit) only achieved by installing
the battery as shown in Fig.4, which only uses high solar
without battery, still gains the cost for the prosumer.
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Fig 4. Pareto analysis comparison across scenarios.

The radar chart in Figure 5 also displays the simulation
summary for all scenarios. The larger polygon area means
better configuration performance in energy trading. More
active in energy trading means more participation in export
or import energy at load peak time in the power grid. Even
self-consumption is higher, the best scenario, which is
using high battery or adding high solar panels, can give the
better cost saving or gain the higher revenue.
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Fig 5. Performance results for all scenarios.
IV. Conclusion

The total cost formula expresses nonlinear optimization as
the objective function by considering battery degradation cost
and power balance constraint. This paper presents a
simulation of a nonlinear optimization problem, encompassing
five different scenarios where prosumers use either batteries
or solar panels. No battery scenario shows the highest total
cost in simulation results with the lowest self-power
consumption. Using a high battery is the best scenario
because the total cost is the lowest even though the self-
power consumption is the highest. Solar energy generation by
prosumers can provide a revenue stream and lead to a
reduction in home electricity costs.
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