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요 약  

 
양자 컴퓨터의 발전은 기존의 해시 기반 보안 구조에 위협을 가하고 있다. 특히 Grover 알고리즘은 고전컴퓨터보다 훨씬 

적은 수로 해시 함수의 프리이미지를 탐색할 수 있어, 해시 기반 구조의 양자에 대한 보안 대책이 필요하다. 기존 

연구에서는 SHA-3 의 Keccak 기반의 오라클 회로를 구현하여 보조큐빗을 폐기하거나 역함수 없이 구성하여 효율성에 

한계가 있었다. 본 논문에서는 SHA-3 의 핵심 연산인 ! 함수에 대해 역함수 !!"을 포함하는 가역적인 양자 회로를 

제안하고, 보조큐빗을 다시 사용할 수 있는 구조를 구현했다. 제안된 회로는 기존에 제시된 연구 대비 CNOT 게이트 수를 
줄이고 양자 회로의 깊이를 적절히 유지하고 있어 최적화된 Grover 알고리즘을 제공할 수 있다 

 

Ⅰ. 서 론  

양자컴퓨터의 등장으로 기존 통신 보안 체계의 흐름이 
바뀌고 있다. 고전컴퓨터 기반의 암호 시스템은 주로 

수학적 문제의 계산 복잡도를 전제로 보안성을 유지해 

왔다. 그러나 Shor 나 Grover 과 같은 양자 알고리즘은 

해당 문제를 고전컴퓨터보다 훨씬 빠르게 해결할 수 
있는 가능성을 제시하여 암호 시스템의 안전성에 대한 

재검토를 요구한다. 특히 Grover 알고리즘은 조건을 

만족하는 값을 탐색할 때, 고전컴퓨터는 평균 

"(2#!")회의 연산이 필요하지만, 이를 "&√2#(으로 낮출 

수 있어 해시 함수에 대한 프리이미지 공격에 실질적인 

위협이 된다 [1]. 이로 인해 Grover 알고리즘 기반의 
양자 오라클 회로 설계가 핵심 연구 주제로 떠오르고 

있다.  

Grover 알고리즘에서 요구되는 양자 오라클 회로는 
함수 )와 역함수 )!"로 구성되며, 전체 회로의 가역성을 

보장하기 위해 두 연산의 구현이 모두 필요적이다 [2]. 

그러나 기존 연구들은 함수 ) 의 연산에서 !  함수만 

구현하거나, ! 연산을 위해 사용되는 보조큐빗을 매 
연산마다 폐기하는 구조로 효율성과 확장성에서 한계를 

보여주고 있다. 특히 !연산은 SHA-3 해시 함수의 핵심 

구성 요소인 Keccak 알고리즘에 포함되어 있으며, 해당 

알고리즘은 보안 강화를 위해 24 라운드 이상 반복이 

요구된다. 이러한 상황에서 매 라운드마다 큐빗을 버리는 
구조는 큐빗 수가 제한적인 현재의 양자컴퓨터 

환경에서는 매우 치명적이다.  

이에 본 논문에서는 SHA-3 에서 !  연산과 그 
역함수를 포함하는 가역적인 양자 회로를 구현하여 매 

연산마다  보조큐빗을 초기화하여 다음 연산에서 다시 

사용할 수 있는 구조를 제안한다. 이를 통해 해시 함수의 

프리이미지 공격을 위한 최적화된 Grover 알고리즘을 

제공할 수 있다. 

Ⅱ. 제안 방식 

본 논문에서는 Keccak 알고리즘의 !  연산과 그 
역함수인 	!!" 을 모두 포함하고, 보조큐빗 +[-][/] 을 

폐기하지 않고 초기화하여 재사용할 수 있는 양자회로를 

제안한다. 먼저 !  연산은 0[-][1][/]의 열 방향 비트들을 

XOR 하여 +[-][/]를 구한다. 이는 수식 (1)로 나타낼 수 
있다.	

+[-][/] ←30[-][1][/]
$

%&'
						(1)	

 

그림 1. θ 의 연산 구조 및 흐름 

!  의 연산 구조 및 흐름을 나타낸 그림 1 을 보면, 

상단의 파란색 열은 고정된 -와 /에서 1방향으로 나열된 

5 개의 0[-][1][/]  비트를 의미하며, 이들을 XOR 한 
결과가 하단 초록색의 보조큐빗 +[-][/]로 저장된다. 
	
0([-][1][/] ← 0[-][1][/] ⊕ +[- − 1][/]⊕ +[- + 1][/ − 1]	

(2) 
수식 (2)는  !  연산의 두 번째 단계로, 기존 상태    

0[-][1][/]에 대해 보조큐빗  + 를 활용해 새로운 상태 

0′[-][1][/]를 계산하는 방식이다. 



 

 
 

그림 2. θ의 연산 구조 및 흐름 

해당 연산은 각 비트에 대해 인접한 열의 정보를 

반영하여 수직 및 대각선 방향으로 정보를 확산시키기 
때문에 Keccak 전체 구조의 확산성을 강화하는 ! 

연산의 특징을 확인할 있다. 따라서 위 수식을 통해 

0[-][1][/]의 모든 비트는 주변 열들의 정보를 반영하여 

업데이트 되고, ! 연산은 양자회로에서 4800개의 CNOT 

게이트로 구현된다.  

!  연산이 완료된 이후에는 보조큐빗 +[-][/]를 다시 

초기 상태로 복원해야 한다. 해당 과정이 역함수인 !!" 
연산이며, !  연산을 통해 업데이트 된 0′[-][1][/]로부터 
+[-][/] 를 복원하는 구조이다. +′[-][/] 가 업데이트 된 

0([-][1][/]로 XOR 된 값이라 할 때, 수식 (2)를 변형한 

수식 (3)을 통해 대부분의 +[-][/]를 되돌릴 수 있다.  

+([-][/] = +[-][/]⊕ +[- − 1][/]⊕ +[- + 1][/ − 1] 
(3) 

그러나 / = 63과 같이 경계에 위치한 비트는 +′  값이 

계산 불가능해 직접적인 복원이 어렵다. 이를 해결하기 

위해 +[-][63] 의 원래 정의였던 0[-][0][63] 부터 
0[-][4][63]까지 5 개의 비트를 XOR 하는 것을 바탕으로 

복원 방식을 구현했다. +′[0][63]을 예시로 들면 다음과 

같이 식을 전개하면 된다. 

 
+([63][0] = +([0][0]⊕ +([1][0] ⊕ +([3][0] ⊕ +([0][1]

⊕ +([1][1]⊕ +([2][1]⊕ +([3][1]
⊕ +([2][2]⊕⋯⊕+([0][63] ⊕ +([2][63] 

(4)  

그림 2 는 보조큐빗을 원래 상태로 되돌리는 과정을 

단계별로 보여준다. (?) 는 !  연산이 완료된 직후의 
보조큐빗 +[-][/]  상태이며, (@) 에서는 이를 기반으로 

수식 (3)에 따라 역방향 연산을 수행하여 +′[-][/]  값을 

계산하는 단계이다. (A) 는 (4)의 +′[0][63]  예시처럼,  

+′[-][/]에 포함된 항을 적절히 전개하고 일부 항을 한 번 
더 XOR 해 원래의 +[-][/]를 소거하는 과정이다. 이때 

해당 수식에는 총 171 개의 항이 포함되며, 자기 자신을 

두 번 XOR 하면 0 이 되는 성질을 이용해 +′[0][0] , 

+′[1][0] , +′[3][0]을 제외한 항들을 한 번 더 XOR 해 

중간 항들을 제거한다. 마지막으로 (B) 는 모든 
보조큐빗을 초기 상태로 초기화한 결과를 보여주며, 이를 

통해 양자 회로의 가역성과 보조큐빗의 완전한 복원이 

되었음을 확인할 수 있다.  

따라서 / = 0부터 / = 62까지는 수식 변형을 통해, / =
63은 논리 연산을 통해 보조큐빗 +를 모두 초기 상태로 

되돌릴 수 있다. 결과적으로 제안된 	!!"  연산은 총 

3120 개의 CNOT 게이트를 사용하게 되고 양자 회로의 

깊이는 318 이 된다. 기존 연구와 본 논문에서 제안한 

구조를 표 1 에서 정리했다. 

 

표 1. 성능 비교 결과 

Papers 
CNOT Gates Qubits 

(Discarded) 
Depth 

! 	!!" 
Amy et. 

al. [3] 
17,600 1,360,000 3,200 (0) 300 

Song et. 

al. [4] 
24,000 N/A 

3,200 

(1,600) 
79 

Jang et. 

al. [5] 
4,800 N/A 1,920 (320) 15 

Proposed 4,800 3,120 1,920 (0) 318 

 

IV. 결론  

본 논문은 Keccak 알고리즘의 !  연산에서 사용되는 

보조큐빗을 폐기하지 않고 초기화하여 재사용 가능한 

양자 회로를 제안한다. 기존 연구들은 !!"  연산을 

생략하거나 보조큐빗을 폐기하는 구조로 반복 수행이 
가능한 구조를 구현하였다. 결과적으로 회로 깊이는 

기존과 유사하면서도 CNOT 게이트의 수를 적절히 

유지했다.  
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