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Abstract—Connected Autonomous Vehicles (CAVs) rely on
secure and trustworthy communication for safe and efficient
operation. Spoofing attacks, where malicious entities inject false
information, pose a significant threat to CAV communication.
This paper proposes a novel framework, Explainable Quantum-
Empowered Antispoofing Intelligence (EQAI), to address this
challenge. EQAI leverages the principles of quantum information
theory to enhance spoofing detection capabilities and integrates
explainable AI (XAI) to provide transparency and interpretability
in the decision-making process. Results show that the EQAI
exhibited better performance compared to classical approaches
in accuracy, latency, robustness, and communication overhead.

Index Terms—Connected Autonomous Vehicles (CAVs), Ex-
plainable AI (XAI), Spoofing Attacks, Quantum Information
Theory, Trustworthy Communication, V2X.

I. INTRODUCTION

Connected Autonomous Vehicles (CAVs) are poised to
revolutionize transportation, offering enhanced safety, effi-
ciency, and convenience. However, the reliance on Vehicle-
to-Everything (V2X) communication makes them vulnerable
to various cyberattacks, including spoofing [1]. In a spoofing
attack, a malicious entity impersonates a legitimate entity to
inject false information into the communication network. This
can have catastrophic consequences in the context of CAVs,
leading to incorrect driving decisions, accidents, and even loss
of life. Traditional cybersecurity measures, such as encryption
and authentication, can mitigate some aspects of spoofing
attacks [2]. However, the dynamic and complex nature of
V2X communication requires more sophisticated solutions.
Classical machine learning-based methods have been explored
for spoofing detection, but they often lack transparency and
can be susceptible to adversarial attacks [3].

To address these limitations, this paper proposes a novel
framework, Explainable Quantum-Empowered Antispoofing
Intelligence (EQAI), which combines the principles of quan-
tum information theory and explainable Al (XAI) [4]. Quan-
tum information theory provides a theoretical foundation for
secure communication and spoofing detection, leveraging the
unique properties of quantum states [5]. XAl enhances the
transparency and interpretability of the detection process,
providing insights into why a particular message is classified
as spoofed or legitimate for informed decision-making.

In this paper, Section II describes the system design and
methodology, Section III presents the simulation results, and
Section IV concludes the paper.

II. SYSTEM DESIGN AND METHODOLOGY

The proposed EQAI framework comprises three main com-
ponents: (1) Quantum-Enhanced Spoofing Threat (QUEST)
detection module, (2) Explainable Hybrid AI (ZAI) module,
and (3) Trust Assessment and Decision-making (TAD) mod-
ule, as seen in Fig. 1.
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Fig. 1. EQAI Architecture highlighting the (1) QUEST module; (2) TAI

module; and (3) TAD module for trustworthy V2V and V2X communication.

A. Quantum-Enhanced Spoofing Threat Detection (QUEST)

Unlike classical information, the QUEST component takes
advantage of the superposition and entanglement properties
of quantum information to detect subtle deviations caused by
spoofing attacks. QUEST involves (4) processes to intercept
spoofing attacks: (i) quantum key distribution (QKD) by estab-
lishing a shared secret key between communicating vehicles
for authentication; (ii) generating a quantum authentication
code (QAC) using the shared key and appending it to the
message; (iii) Transmitting the message with the QAC as a
sequence of quantum states; and (iv) verifying the QAC by
measuring the quantum states using the shared secret key. If
QAC is corrupted beyond a tolerable threshold, the message
is flagged as potentially spoofed.

B. Explainable Hybrid AI Module (TAI)
While quantum mechanics provides enhanced security, it

can be opaque. The TAI module addresses this by providing

explanations of the QUEST module decisions. This includes:
« Extract Relevant Features by defining a quantum circuit

Ug(z') that encodes the classical feature vector =’ € R”
into a g-qubit quantumq state.

Up(2') = Q) R-(x))H; ifg=n (1)
i=1
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e Define Variational Quantum Circuit (VQC) define
a parameterized quantum circuit V(©) with L layers,
where © represents the set of trainable parameters (rota-
tion angles). Each layer consists of single-qubit rotations
and entangling gates (e.g., CNOT).

V(e) =V (6")- -

Vi(oW) )

where 6() are the parameters in the I-th layer.

o Define Quantum Neural Network (QNN) Output
as the expectation value of a set of observables O =
{O;}7L, on the final quantum state:

Gout (23 ©) = (0" (Us (') V(©) OV (©)Us (2'))[0)"  (3)
where |0)? is the initial state of the ¢ qubits. For clas-
sification into C' classes, we used Pauli Z (M = gq)

measurements on each qubit and then processed these
measurements classically.

« Define Classical Neural Network g(z; W) with weights
W, which takes the output of the QNN (or a processed
version of it) as input and produces the final classification.

2 = Process(qout (7' 0))4 || g(z; W) “4)

where Process = desired output dimension with more
complex layers; and ¢ = final output layer with C' neurons
and C classes with a softmax activation function.

o Define Hybrid Model as f(z/;0,W) =
g(Process(qoyt(2';0)); W) having a cross-entropy

loss function defined as: .
—> " yilog(i)
i=1

o Hybrid Model Training & Evaluation using trainable
parameters © and W and updating the parameters using
the classical optimizer O with learning rate «:
O+—0—-—a-ONVel)and W+ W —a-O(VwL)

C. Trust Assessment & Decision-Making (TAD) Module

The TAD module integrates the output of the QUEST and
ZAI modules to assess the trustworthiness of the received
messages and make informed decisions for drivers. The GPS
spoofing detection for autonomous vehicles dataset from IEEE
dataport [6] was used to train the proposed model. It has
158,170 samples, 13 features, 55% legitimate samples (0), and
45% spoof attacks; Simplistic(l), Intermediate(2), and
Sophisticated(3). Simulation was carried out in a Python

environment using PennyLane and PyTorch frameworks.
III. RESULT AND PERFORMANCE EVALUATION
TABLE I
EQAI PERFORMANCE EVALUATION USING CLASSICAL AI METRICS

®)

Model Acc (%) Prc (%) Rec(%) F1 (%) Loss Time(s)
MLP 91.90 91.48 91.90 91.20 0.2746  1691.13
EQAI 80.36 77.19 80.04 75.82 0.8360  7506.04

From Table I, the EQAI performed relatively well in
determining the legitimacy of a received vehicular message
compared to classical ML, though with higher training time.

Furthermore, Fig. 2(a) demonstrates that the EQAI predicted
legitimate messages (Class 0) with the highest probability of

0.52 as against 0.24, 0.16, and 0.05 for simplistic (Class 1),
intermediate (Class 2), and sophisticated (Class 3) spoofing
attacks. The features PD (pseudo-range), CP (carrier phase cy-
cles), and CNO (carrier-to-noise ratio) provided the strongest
support for determining a legitimate message (class 0), out-
weighing the relatively minor opposing influence of TOW, RX,
and TCD. Hence, class 0 received the highest confidence score
of 0.54 and was Qelected as 'r)he final m‘edmrmn bv F()AI

Prediction probabilities
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Fig. 2. xAI Module results highlighting the parameters governing the EQAI-
Q'g decision to determine the authenticity of a received message by vehicles.
inally, the EQAI had a total communication overhead

of 0.0030MB and trainable parameters of 0.0004MB, better
than MLP with 3108MB, meaning an increase in convergence
speed. The estimated computational complexity of EQAI
is 0(131logl3) =~ 0(4.7 x 10°) due to its hybrid classical-
quantum structure, unlike the polynomial complexity of MLP
[O(N % 6016) ~ 0(7.61 x 10®)], and it has a moderate robust-

ness to sophisticated attacks
ONCLU
This paper presented a nov? (ﬁ\;plamable Quantum-

Empowered Antispoofing Intelligence (EQAI) framework for
trustworthy connected autonomous vehicles communication.
By leveraging the explainability capability of XAI, the EQAI
framework is more robust to sophisticated spoofing attacks
that might evade classical detection methods by mimicking
legitimate signals. Future work will improve the framework

and adapt it to other attacks on CAVs for informed decision.
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