
 

최적 양자 인공 신경망 구조 설계를 위한 One-Shot Quantum NAS 알고리즘 

손석빈, 김중헌 

고려대학교 

lydiasb@korea.ac.kr, joongheon@korea.ac.kr  

 

A One-Shot Quantum NAS Framework for Designing Optimal  

Quantum Neural Network Architectures 

Seok Bin Son, Joongheon Kim 

Korea Univ. 

요 약  

 
양자 신경망(QNN)의 성능은 양자 회로 내 게이트 종류 선택에 크게 좌우된다. 본 논문에서는 사전 정의된 게이트 배치 

구조 내에서 최적의 게이트 종류를 효율적으로 선택하기 위해 One-shot NAS 기법을 적용하였다. 실험 결과는 제안한 

One-shot NAS 방법이 양자 회로 설계에 효과적임을 입증하였다. 

 

Ⅰ. 서 론  

양자 신경망(Quantum Neural Network, QNN)은 양자 

얽힘과 중첩 같은 양자역학적 특성을 활용하여, 고전 

신경망보다 높은 표현력과 계산 효율을 제공한다. 이러한 

특성 덕분에 QNN 은 이미지 분류 [1], 연합학습 [2] 등 

다양한 분야에서 가능성을 보여주고 있다. QNN 의 핵심 

구성 요소인 파라미터화된 양자 회로(Parameterised 

Quantum Circuit, PQC)는 각 위치에 어떤 양자 게이트를 

배치하느냐에 따라 회로의 성능과 학습 안정성에 큰 

영향을 미친다. 하지만 가능한 게이트의 종류와 위치 

조합이 많아질수록 전체 탐색 공간이 지수적으로 

증가하며, 모든 구조를 개별적으로 평가하는 전통적인 

탐색 방식은 연산 비용과 자원 소모가 매우 크다는 

문제가 있다 [3-5]. 이를 해결하기 위해 본 논문은 

One-shot Neural Architecture Search (One-shot NAS) 

[6-7] 기법을 양자 회로 구조 탐색에 적용한다. One-

shot NAS 는 모든 후보 회로를 통합한 Supernet 을 

구성한 뒤, 가중치를 공유하며 동시에 학습함으로써 구조 

별 성능을 효율적으로 평가할 수 있도록 한다. 본 연구는 

One-shot NAS 를 활용한 양자 회로 자동 설계 기법을 

제안하고, 실험을 통해 기존 양자 회로보다 One-shot 

NAS 로 찾은 양자회로가 정확도가 더 높다는 것을 

입증하였다.  

 

Ⅱ. One-shot Quantum NAS 알고리즘 

본 논문에서는 양자 회로의 구조 최적화를 위해 One-

shot NAS 기법을 도입하여, PQC 의 게이트 종류를 

효율적으로 탐색한다. 기존 NAS 방식은 가능한 모든 

회로 구조를 개별적으로 학습해야 하므로, 탐색 공간이 

커질수록 연산 비용이 급격히 증가한다. 반면, One-shot 

NAS 는 하나의 통합 네트워크인 Supernet 을 구성하고, 

다양한 후보 아키텍처를 가중치 공유 방식으로 동시에 

학습함으로써 이러한 연산 부담을 크게 줄인다. 본 

연구에서는 양자 회로의 게이트 배치가 사전에 다음과 

같이 고정되어 있다고 가정한다. 예를 들어, 큐빗 수 𝑄 = 

4, 레이어 수 𝐿 = 4 인 회로에서 각 위치에 배치된 게이트 

유형은 다음과 같은 행렬로 표현된다. 

 

𝑋𝑡 = [

0 0
1 2

1 1
1 0

2 0
1 1

0 0
1 2

] 

 

여기서 1 은 1-큐빗 게이트, 2 는 2-큐빗 게이트, 0 은 

게이트 없음을 의미한다. One-shot NAS 의 목표는 

이러한 고정된 구조 내에서 각 게이트 위치에 가장 

적합한 게이트 종류를 자동으로 선택하는 것이다. 이를 

위해 다음과 같은 게이트 후보군을 정의한다. 1-큐빗 

게이트의 경우 RX, RY, RZ, U3 로 구성되며, 2-큐빗 

게이트는 CX, CY, CZ, CU3, SWAP 의 다섯 가지로 

구성된다. 각 게이트 위치는 Supernet 내부에서 해당 

후보군에 대한 선택 경로를 가지며, 학습 과정에서는 

이들 경로가 공통의 가중치를 공유하며 동시에 

최적화된다.  

본 논문에서는 Supernet 최적화를 위해 대표적인 

One-shot NAS 알고리즘인 DARTS [6]와 

ProxylessNAS [7]를 적용하였다. DARTS 는 연속적인 

구조 파라미터를 도입하여 각 후보 연산의 중요도를 

gradient descent 방식으로 학습한다. 반면 

ProxylessNAS 는 각 학습 단계에서 일부 후보 연산만을 

선택적으로 활성화하여 메모리 사용량을 줄이고 학습 

안정성을 높인다. 특히 ProxylessNAS 는 연산 자원이 

제한된 환경에서도 높은 효율성과 탐색 정확도를 

제공한다는 장점이 있다. 최종적으로 학습이 완료되면, 

Supernet 내에서 각 위치별로 가장 높은 성능을 보인 

게이트가 선택되어 최적의 양자 회로 아키텍처가 

완성된다. 최종 실험 결과, ProxylessNAS 에서 생성한 

최종 회로 구성은 다음과 같이 표현된다. 
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실험은 0~1 사이의 숫자만 포함된 Mini-MNIST 

데이터셋과 100 epoch 에서 진행되었다. 그림 1 은 

동일한 게이트 배치 구조를 전제로 하되, 게이트 종류 

선택 방식에 따라 분류 정확도에 차이가 발생함을 

보여준다. 고정 회로인 U3CU3 에 비해, One-shot NAS 

기반 탐색 기법(DARTS, ProxylessNAS)은 더 적절한 

게이트 조합을 찾아내며 성능을 향상시켰다. 특히 

ProxylessNAS 는 메모리 효율성과 안정적인 학습을 

바탕으로 가장 높은 정확도를 달성하였으며, 양자 회로 

구조 탐색에 적합한 방식임을 실험적으로 확인할 수 

있다. 

 

Ⅲ. 결론  

본 논문에서는 PQC 의 구조를 효율적으로 탐색하기 

위해 One-shot NAS 기법을 적용한 새로운 양자 회로 

설계 방법을 제안하였다. 특히 사전에 정해진 게이트 

배치 구조를 기반으로, 각 위치에 적합한 양자 게이트 

종류를 자동으로 선택함으로써 회로의 성능을 극대화할 

수 있도록 하였다. 제안한 프레임워크는 전통적인 고정형 

양자 회로와 비교하여, 더 높은 정확도를 달성함을 

실험적으로 확인하였다.  
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그림 1 제안하는 방법과 다양한 방법의 정확도 비교 


