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요 약  

 
본 논문은 양자 연합학습(Quantum Federated Learning, QFL)에서의 서버 집계 방식이 모델 성능에 미치는 

영향을 분석한다. 세 가지 대표적인 집계 방식인 FedAvg, Weighted FedAvg, Server Momentum 을 비교 대상으로 

하였으며, MedMNIST 데이터셋 기반 실험을 통해 각 방식의 정확도를 평가하였다. 실험 결과, FedAvg 와 Weighted 

FedAvg 가 높은 정확도를 기록한 반면, Server Momentum 은 수렴 안정성 측면에서 기대와 달리 낮은 성능을 보였다. 본 

연구는 QFL 환경에서 상황에 따라 적절한 집계 전략 선택의 필요성을 강조한다. 

 

Ⅰ. 서 론  

양자 컴퓨팅(Quantum Computing)의 발전과 함께, 

양자 신경망(Quantum Neural Networks, QNN)의 분산 

학습에 대한 관심이 높아지고 있다 [1]. 특히, 데이터가 

여러 지점에 분산되어 있는 환경에서는 중앙 서버가 각 

클라이언트의 데이터를 직접 수집하지 않고 모델 

파라미터만을 공유하는 연합학습(Federated Learning) 

기법이 적합하다 [2]. 이러한 연합학습을 양자 컴퓨팅 

환경에 적용한 양자 연합학습(Quantum Federated 

Learning)은 양자 모델의 학습 가능성과 통신 효율성, 

그리고 개인정보 보호 측면에서 주목받고 있다 [3]. 

기존의 양자 연합학습 연구는 대부분 FedAvg 와 같은 

단순 평균 기반의 집계 방식을 사용하였다. 하지만 

클라이언트 간 데이터 분포가 상이하거나 학습이 

불안정한 경우, 단순 평균 방식은 모델 수렴에 한계를 

보인다 [4]. 따라서 본 논문에서는 서버에서의 

집계(aggregation) 전략을 중심으로 다양한 방식이 양자 

연합학습에 미치는 영향을 분석하고자 한다. 이를 위해 

대표적인 세 가지 집계 방식(FedAvg, Weighted FedAvg, 

Server Momentum)을 비교하고, 그에 따른 양자 모델 

성능 차이를 실험적으로 검증한다.  

 

Ⅱ. One-shot Quantum NAS 알고리즘 

양자 연합학습은 중앙 서버와 여러 클라이언트가 

협력하여 양자 신경망을 학습하는 구조로, 다음과 같은 

절차로 진행된다. 먼저 서버는 글로벌 모델을 초기화하여 

각 클라이언트에게 전달한다. 이후 각 클라이언트는 로컬 

데이터를 기반으로 자체적으로 양자 모델을 학습하며, 

학습이 완료되면 각자의 모델 파라미터를 서버로 

전송한다. 서버는 이 파라미터들을 집계하여 글로벌 

모델을 갱신하며, 이 과정을 여러 차례 반복함으로써 

전체 모델의 성능을 향상시킨다. 이때, 서버가 각 

클라이언트의 모델을 어떻게 집계하느냐에 따라 전체 

학습의 효율성과 성능이 달라질 수 있다.  

  본 논문에서는 대표적인 세 가지 집계 방식을 

분석한다. 첫 번째는 가장 기본적인 방식인 Federated 

Averaging (FedAvg)이다 [4]. 이 방식은 모든 

클라이언트의 모델 파라미터를 단순 평균하여 글로벌 

모델을 업데이트하는 방식이다. 수식으로는 𝑤𝑔𝑙𝑜𝑏𝑎𝑙  =
1

𝐾
 ∑ 𝑊𝑘

𝐾
𝑘=1  로 표현되며, 구현이 간단하고 대부분의 

기본적인 연합학습 상황에서 효과적인 것으로 알려져 

있다. 하지만 클라이언트 간의 데이터 양이 상이할 

경우에는 모든 클라이언트의 기여도를 동일하게 보는 이 

방식이 적절하지 않을 수 있다는 단점이 존재한다. 

이러한 한계를 보완하기 위해 제안된 방식이 Weighted 

FedAvg (WFedAvg)이다 [4]. 이 방식은 각 

클라이언트가 보유한 데이터의 양을 고려하여 모델 

파라미터에 가중치를 부여하는 방식으로, 

수식은  𝑤𝑔𝑙𝑜𝑏𝑎𝑙  =  ∑
𝑛𝑘

𝑛𝑡𝑜𝑡𝑎𝑙
𝑊𝑘

𝐾
𝑘=1  로 나타낼 수 있다. 

여기서 𝑛𝑘   는 클라이언트 𝑘의 데이터 수를 의미하며, 

전체 데이터의 합인 𝑛𝑡𝑜𝑡𝑎𝑙   로 나누어 가중치를 

부여한다. 이 방식은 데이터가 불균형하게 분포된 

상황에서도 보다 안정적인 학습 성능을 기대할 수 있어, 

클라이언트 간 데이터 크기 차이가 큰 경우에 적합하다. 

마지막으로 살펴볼 방식은 Server Momentum (SM)이다 

[5]. 이 방식은 글로벌 모델의 업데이트 과정에 

모멘텀(momentum)을 도입함으로써, 과거 업데이트 

방향을 일정 비율 반영하여 진동을 줄이고 수렴을 

안정화시키는 데 목적이 있다. 수식으로는 𝑚𝑡 = 𝜇𝑚𝑡−1 +

(1 − 𝜇)𝛥𝑡 , 𝑤𝑡 = 𝑤𝑡−1 −  𝜂𝑚𝑡  로 표현되며, 여기서 𝜇는 

모멘텀 계수, 𝜂는 학습률, 𝛥𝑡는 현재 클라이언트로부터의 

평균 업데이트를 의미한다. 이 방식은 특히 고비선형성 

모델 또는 non-IID 데이터 환경에서 학습이 불안정하게 

진행되거나 소수의 epoch 만을 사용할 수 있는 환경에서 

유용하다. 이와 같이 각 집계 방식은 데이터 분포, 

클라이언트 수, 연산 환경 등에 따라 상이한 장단점을 

가지므로, QFL 환경에서는 상황에 맞는 집계 전략 

선택이 성능 향상의 핵심 요소가 된다.  

  MedMNIST 데이터셋을 사용하여 50 epoch 동안 세 



가지 서버 집계 방식을 비교한 결과, 그림 1 과 같이 

FedAvg 와 WFedAvg 가 각각 65.63%와 65,7%의 

정확도를 보여 가장 우수한 성능을 기록하였다. 반면, 

SM 은 42.89%로 상대적으로 낮은 정확도를 나타냈다. 

이는 간단한 의료 영상 분류 문제에서는 단순 평균 

기반의 FedAvg가 가장 효과적인 집계 전략일 수 있음을 

시사하며, SM 방식은 오히려 과도한 누적 효과로 인해 

수렴을 방해할 수 있음을 보여준다. WFedAvg 는 데이터 

불균형이 클 경우에 더욱 유리할 수 있으나, 본 

실험에서는 그 차이가 제한적이었다. 

 

Ⅲ. 결론  

본 연구에서는 양자 연합학습에서 사용되는 세 가지 

대표적 서버 집계 방식을 비교 분석하였다. MedMNIST 

기반 실험 결과, FedAvg 와 WFedAvg 는 높은 정확도를 

보였으며, 특히 FedAvg 는 가장 간단하면서도 효과적인 

방식으로 확인되었다. 반면, SM 은 본 실험 환경에서 

수렴을 방해하며 성능이 저하되는 결과를 보였다. 이러한 

결과는 데이터 특성과 환경에 따라 집계 전략을 적절히 

선택하는 것이 QFL 성능 향상의 핵심임을 시사한다.  
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그림 1 서버 집계 방식별 양자 연합학습 정확도 비교 


