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요 약  
 위치 인식은 3rd Generation Partnership Project (3GPP)에서 정의된 B5G 및 6G 이동통신을 포함한 다양한 응용에서 필수적이다. 

그러나 실내 공장과 같은 복잡한 무선 환경은 심각한 다중경로 전파 및 non-line-of-sight (NLOS) 조건을 특징으로 하여 측위 정확도가 

저해된다. 이를 해결하고자 NLOS 식별 알고리즘이 많은 관심을 받고 있다. 하지만 대부분은 학습 기반 또는 많은 파라미터를 요구하는 

알고리즘이다. 본 논문에서는 사전 학습 데이터나 환경 모델 없이 비지도 방식으로 그리고 round-trip-time (RTT) 측정값 만으로 NLOS 

base station (BS)를 식별하고 위치 추정 정확도를 높힐 수 있는 Combinatorial Data Augmentation (CDA) 기반 NLOS 식별 기법을 

제안한다. 3GPP 표준 기반 세가지 실내 시나리오에서의 시뮬레이션을 통해, 제안하는 기법이 다양한 환경에서 NLOS BS 를 91~96% 

수준의 정확도로 식별하며, 그를 활용한 측위 성능이 mean absolute error (MAE) 기준으로 다변측량 기법 대비 55~89% 향상됨을 보인다. 

 

I. 서 론 

B5G 및 6G 이동통신에서는 정밀한 측위 성능을 요구한다. 3rd 

Generation Partnership Project (3GPP) 표준에 따르면 현재 

round-trip-time (RTT) 기반 측위법과 같은 기하학적 특징을 

활용한 다변측량 기반 기법들이 많이 활용되는데, 이들은 non-

line-of-sight (NLOS)의 편향이 심한 환경에서는 측위 성능이 

크게 저하된다 [1]. 최근 이런 문제를 극복하기 위해 다양한 

NLOS 식별·완화 알고리즘이 제안되었으나, 대부분은 학습 

기반으로, 대규모 레이블링 데이터나 수십개 이상의 파라미터 

최적화가 요구된다 [2], [3]. 본 논문에서는 데이터 사이의 

조합을 통해 여러개의 사전 user equipment (UE) 측위 정보를 

추출하는 combinatorial data augmentation (CDA) [4]를 통해 

비지도 방식으로 그리고 RTT 측정값 만으로 NLOS base station 

(BS)를 식별하고 측위 정확도를 높힐 수 있는 CDA 기반 NLOS 

식별 기법을 제안한다. 또한 식별된 NLOS BS 를 측위 기법에 

적용하는 몇가지 측위 기법을 제안한다. 이후 3GPP 표준 채널 

모델 Indoor open office (IOO), Indoor factory sparse-high 

(InF-SH), Indoor factory dense-high (InF-DH) 시나리오의 [5] 

시뮬레이션을 통해, NLOS 식별 정확도는 각각 94.1%, 91.3%, 

96.2%를 달성했으며, 이를 적용한 측위 성능은 mean absolute 

error (MAE) 기준으로 다변측량 기법 대비 각각 55.7%, 89.4%, 

59.1% 향상됨을 보인다. 

II. 시스템 모델 및 문제 정의 

 이번 절에서는 파라미터 모델 및 문제 정의에 대해 설명할 

것이고, 수식의 간소화를 위해 UE 의 인덱스는 생략한다. 즉, 

단일 UE 상황의 수식으로 나타낸다. 

A. 파라미터 모델 

본 논문에서는 셀룰러 네트워크 시나리오에서 	𝑁!" 개의 BS 가 

특정 위치에 배치되어 있고, UE 위치는 랜덤하게 주어진 상황을 

고려한다. BS 위치의 인덱스 집합은 𝒩!" = {1, 2,⋯ , 𝑁!"} 로 

정의한다. UE 의 2D 위치 𝐩 ∈ ℝ# 에 따라 결정되는 BS 들과 

UE 사이의 실제 거리를 𝑑$(𝐩) = ||𝐩 − 𝐩$!"||	, 𝑛 ∈ 𝒩!"로 정의한다.	
RTT 값 기반으로 측정된 거리는 𝑑5$ =

%⋅'(!	
#
	 , 𝑛 ∈ 𝒩!"로 정의한다. 

이때 𝑐는 신호 전파 속도, 𝜏̂$는 𝑛번째 BS 로부터 측정된 RTT 

값이다. 

B. 문제 정의 

 특정한 위치에 있는 UE 의 9𝑑5$:$∈𝒩"#
와	 {𝐩$!"}$∈𝒩"#가	 주어졌을	

때,	NLOS	 편향이	 심한	 BS 의	 인덱스	 집합	 𝒩,- ∈ {1,2,⋯𝑁$}을	

비지도	 방식으로	 찾는	 것을	 목적으로	 한다.	 또한	 𝒩,- 을	 측위	
기법에	 적절히	 적용하여	 UE 의	 추정	 위치	 𝐩; 의	 정밀도를	
높히고자	 한다.	 	

III. CDA 기반 비지도 NLoS 식별 

 이번 절에서는 II-B 에서 언급된 문제를 해결하기 위해, 

측정거리 9𝑑5$:$∈𝒩"#
만을 사용하여 비지도 방식으로 NLOS BS 를 

식별 할 수 있는 새로운 CDA 기반 비지도 NLOS 식별 

알고리즘을 제안한다. 

A. CDA 기반 특징 추출 

먼저 𝑔. ∶ ℝ. → ℝ#을, 𝑀개의 RTT 기반 측정 거리를 입력 받아 

다변측량 기반으로 UE 의 2D 위치를 추정 후 반환하는 함수로 

정의한다. 이때 [1]에서 제안한 CDA 기법에 착안해, 다양한 

BS 조합에 대응하는 RTT 기반 측정거리를 통해 단일 UE 의 

추정 위치를 여러개의 preliminary estimated location (PEL)로 

증강 가능하다. 구체적으로, BS 의 전체 집합 𝒩!"에서 원소의 

개수가 𝑀 인 ℓ 번째 부분집합 ℳℓ ⊂ 𝒩!" 이 주지면, 해당 BS 

조합으로 얻은 ℓ번째 PEL 𝐳ℓ는 다음과 같이 표현된다. 

𝐳ℓ = 𝑔. D9𝑑50:0∈ℳℓ
E , ℓ ∈ ℒ = {1, 2,⋯ , 𝐿}. (3) 

여기서 𝐿은 크기가 𝑀인 BS의 서로 다른 부분집합의 총 개수로, 

𝐿 = I2"#. J이다. 모든 PEL 의 집합, 즉 all PEL set (APELS) 은 

𝒵 = {𝐳ℓ}ℓ∈ℒ와 같이 정의되며, 각 𝐳ℓ은 특정 BS 의 조합 인덱스 

ℓ ∈ ℒ 과 매핑 된다. 한편 line-of-sight (LOS)/NLOS 여부는 

개별 BS 단위 𝑛 ∈ 𝒩!"와 매핑 되므로, NLOS 를 식별하려면 

BS 별 특징을 추출해야 한다. 이를 위해 우리는 APELS 

𝒵로부터 BS 별 특징을 추출 할 수 있는 CDA 기반 NLOS 식별 

기법을 제안한다. 

B. CDA 기반 NLOS 식별 기법 

 본 절에서 제안하는 CDA 기반 NLOS 식별 기법은 특정 BS 를 

포함(in)했을 때의 PEL 분포와 제외(out) 했을 때의 PEL 

분포를 비교하여, 각 BS 가 위치 추정에 끼치는 편향을 

활용한다. 구체적으로, 제안하는 기법은 다음과 같은 절차를 

따른다. 

   1) In/out PEL 집합 정의 : 먼저 𝑛번 BS 가 포함된 PEL 조합 

𝒵$
(56)

과 제외된 PEL 조합 𝒵$
(89:)

으로 분리한다. 수식은 다음과 

같다. 

𝒵$
(56) = {𝐳ℓ ∈ 𝒵	|	𝑛 ∈ ℳℓ}	, 

															𝒵$
(89:) = {𝐳ℓ ∈ 𝒵	|	𝑛 ∉ ℳℓ}	, 𝑛 ∈ 𝒩!". (4) 



 

   2) 잔차 z벡터 정의 : In/out 각 PEL집합의 중앙값을 분포의 

대푯값으로 정의하며, 다음과 같이 나타낸다.  

𝐦$
(56) = medianI𝒵$

(56)J ∈ ℝ#	,  

																				𝐦$
(89:) = medianI𝒵$

(89:)J ∈ ℝ#	, 𝑛 ∈ 𝒩!"		. (5) 

이후 𝐦$
(56)
와𝐦$

(89:)
 잔차 벡터 𝐫$을 다음과 같이 정의한다. 

𝐫$ = 𝐦$
(56) −𝐦$

(89:)	 (6) 

   3) 편향각 정의 : 잔차 벡터 𝐫$는 𝑛번째 BS 에 의한 PEL 

분포의 편향을 절대좌표 기준으로 표현한다. 하지만 분포의 

편향을 분석하기 위해서는 실제 UE 의 위치 𝐩와 BS 위치 𝐩$!"를 

기준으로 하는 상대적인 편향을 분석해야 한다. 이때 𝐩 는 

모르는 정보이므로, APELS 의 중앙값 𝐦;<= = median(𝒵) 로 

근사한다. 그러므로 기준 방향 벡터를 𝐯$ = 𝐦;<= − 𝐩$!"로 정의할 

수 있고, 기준 방향 벡터 𝐯$와 잔차벡터 𝐫$ 이 이루는 각도를 

편향각 𝜃$로 정의한다. 수식은 다음과 같다. 

𝜃$ = cos>? ]
𝐫$@𝐯$

‖𝐫$‖	‖𝐯$‖
_	. (7) 

   4) NLOS BS 집합 정의 : 특정기지국에 의해 편향된 방향을 

나타내는 편향각 𝜃$ 와 얼마나 편향되었는지 나타내는 잔차 

벡터의 L2-norm 값 ‖𝐫$‖을 NLOS 식별 기준으로 한다.	 𝜃$ 의 

임계치를 𝜖A 로, ‖𝐫$‖의 임계치를 𝜖B 로 정의한다. 이때 우리가 

구하고자 하는 NLOS BS 집합 𝒩,- 를 다음과 같은 수식으로 

구할 수 있다. 

𝒩,- = {	𝑛 ∈ 𝒩!"		|		𝜃$ ≥ 𝜖A 	∧ 	‖𝐫$‖ ≥ 𝜖B	}. (8) 

C. 측위 전략 

 이번 절에서는 III-B 절에서 구한 𝒩,- 를 활용하여 측위에 

적용하는 방식을 정의한다.  

    1) Standard : Standard 방식은 특정 BS 들에서 얻은 

9𝑑5C:C∈𝒮	을 활용하여  다변측량 기반 least square 방식으로 최적 

UE 위치  𝐩;를 구한다. 수식은 다음과 같다. 

𝐩; = arg	min
𝐩F

gh𝑑5C − 𝑑C(𝐩i)h
C∈𝒮

	 . (9) 

이때 Standard 방식에서는 모든 BS 를 사용하므로 𝒮G = 𝒩!"이다. 

    2) Standard Excluding NLOS : 이번 측위 방식에서는 

standard 방식과 동일하게 식(9)를 사용하지만, 식별한 NLOS 

BS 를 제외한다. 수식은 다음과 같다. 

𝒮GH = 𝒩!"	\	𝒩,- = {𝑛 ∈ 𝒩!"|	𝑛 ∉ 𝒩,-}		. (10) 

   3) Combinatorial Data Augmentation (CDA) : CDA 기반 측위 

기법은 APLES 의 중앙값을 최적 UE 위치로 한다. 수식은 

다음과 같다 

𝐩; = median({𝐳ℓ}ℓ∈ℒ) (11) 

   4) CDA Excluding NLOS : CDA Excluding NLOS 방식은 모든 

PEL 인 APELS 중에서 NLOS BS 를 하나라도 포함한 BS 조합에  

의해 추정된 PEL 을 제거한 후 남은 PEL 집합의 중앙값을 최적 

UE 위치로 한다. 수식은 다음과 같다. 

𝐩; = median({	𝐳ℓ	|		ℓ ∈ ℒ	 ∧ 	ℳℓ ∩	𝒩,- = ∅	}). (12) 
 

 

IV. 시뮬레이션 

 3GPP 에서 정의한 Indoor open office (IOO), Indoor factory 

sparse-high (InF-SH), Indoor factory dense-high (InF-DH) 

시나리오를 대상으로 성능을 평가하였다. IOO 는 NLOS 비율이 

35%, InF-SH 는 17% 그리고 InF-DH 는 56%이다. 그리고 

IOO 보다 InF 환경의 클러터 밀도가 더 높기 때문에 NLOS 가 

발생했을 때의 편향의 정도가 더 강하다. 각 시나리오에 대해 

무작위로 생성된 1,000 개의 UE 위치에서 III-C 에서 정의한 

네가지 측위 기법을 사용하였다. RTT 측정치는 3GPP 채널 

모델에서 규정한 각 시나리오에 부합하는 pathloss, NLoS 

probability, delay spread, 프로토콜 모델 등을 모두 고려하여 

생성하였다. 모든 시나리오에서 frequency range 1 (FR1) 

대역을 사용하였으며, 구체적으로 IOO 시나리오에서는 center 

frequency (CF) 4GHz, bandwidth (BW) 100MHz 그리고 InF-

DH, InF-SH 시나리오 에서는 CF 3.5GHz, BW 100MHz 를 

사용하였다. FR2 대비 CF 가 상대적으로 낮으므로 다중경로 

효과가 더 강하게 발생한다. 먼저 NLOS 식별 정확도는 NLOS 

식별 정확도는 IOO, InF-SH, InF-DH 각각 94.1%, 91.3%, 

96.2%을 달성하였고, 측위 성능은 그림. 1 의 cumulative density 

function (CDF)를 통해 나타냈다. CDF 를 통해 두 측위 방식 

모두 NLOS 를 제거한 -Excluding NLOS 기법을 썼을 때 모든 

시나리오에서 큰 폭의 성능 향상이 있음을 알 수 있다. 이는 

제안한 CDA 기반 NLOS 식별 기법이 현실적인 채널 

환경에서도 NLOS 영향을 효과적으로 제거함을 증명한다. 

V. 결 론 

 본 논문에서는 CDA 기반 비지도 NLOS 식별 알고리즘을 제안 

하고, CDA 측위 방식에 활용하여 정확한 측위를 수행하였다. 

3GPP 표준 문서를 따라 설계된 현실적인 시나리오 시뮬레이션 

결과, 제안 방식은 특히 NLOS 의 빈도는 낮지만 편향이 강한 

InF-SH 에서 MAE 를 89% 감소시켰으며, 다른 두 

시나리오에서도 성능이 50% 이상 개선되었다. 이는 사전 

데이터나 환경 정보를 필요로 하지 않고도 5G 및 이후의 

셀룰러 네트워크에서 실시간 위치 추정의 신뢰성을 효과적으로 

높일 수 있음을 시사한다. 
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