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요   약 
 

본 연구에서는 BCH (63, 36) 부호의 Neural MS 디코딩을 대상으로 Straight-Through Estimator(STE)와 Log-
Likelihood Ratio(LLR) Scaling 기법을 적용하고, 각 기법이 신경망 디코딩의 수렴 효율성과 복호 성능에 미치는 
영향을 정량적으로 비교하였다. 실험 결과, LLR scaling 기법은 신경망 기반 복호기의 수렴 속도를 개선하고 성
능을 향상시켜, 보다 효율적인 neural decoding 설계 가능성을 보여주었다. 

 
   1. 서론 

신경망 기반 반복 복호기 구조는 선형 블록 부호의 
복호 성능을 향상시키기 위한 새로운 패러다임으로 자
리잡고 있다. 특히 Belief Propagation(BP) 및 Min-
Sum(MS)과 같은 기존 알고리즘에 학습 가능한 가중치

를 도입한 Neural BP, Neural MS 구조는 계산량과 복호 
성능 사이의 균형을 통해 다양한 응용 가능성을 확보

하고 있다 [1,2]. 
그러나 NMS 구조는 반복 횟수가 적거나 네트워크 

깊이가 얕은 상황에서 학습 안정성과 수렴 속도 측면

에서 성능 저하를 겪는 경우가 있다. 본 연구에서는 
이를 개선하고자, Neural MS에 STE와 LLR Scaling을 적
용하고 그 성능을 정량적으로 비교하였다. 목적은 
Neural MS 의 계산 효율성은 유지하며 학습 효율과 복
호 성능을 동시에 향상시키는 신경망 최적화 전략을 
도출하는 데 있다. 

   2. 본론 
2.1 BCH 부호 

BCH 부호는 대수적 구조를 바탕으로 한 선형 블록 
부호로, 고정된 부호 길이와 명확히 정의된 오류 정정 
능력을 바탕으로 예측 가능한 성능을 제공하여 제어 
채널이나 저장 장치 등에서 널리 사용된다. 일반적으

로 이진 갈루아 필드 GF(2! ) 위에서 정의되며, 𝑛	 =
	2! − 1형태의 코드 길이를 갖는다.  
2.2 반복 기반 디코딩 알고리즘 

BCH 코드에 적용될 수 있는 반복 기반 디코딩 알고

리즘으로는 BP, MS, 그리고 해당 코드에 신경망 기반 
학습이 적용된 Neural BP, Neural MS 알고리즘이 있다. 
이들은 Tanner 그래프 기반 메시지 전달 구조를 공유

하며, 변수 노드와 검사 노드 간 메시지를 반복적으로 
갱신하여 오류를 정정한다. 
BP 알고리즘은 베이즈 추론 기반의 확률적 디코딩 방

식으로 식은 다음과 같다. 
𝑚" = 2 tanh#$ ,	Π%&$' 𝑡𝑎𝑛ℎ ,

𝑚(,*
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이때 𝑚"는 검사노드에서 변수 노드로 전달되는 메시

지, 𝑚(는 변수노드에서 검사 노드로 전달되는 메시지, 
𝑚(,*는 해당 검사노드로 한 개 edge 에 해당하는 메시

지이다. 
BP 의 복잡한 계산식을 단순화한 MS 알고리즘은 최

소 절댓값 기반 근사화를 이용하며 식은 다음과 같다.  

𝑚" = ∏%&$
' 	min |𝑚(,*| 𝑠𝑔𝑛8𝑚(,*9 (2) 

Neural BP 와 Neural MS 알고리즘은 Trellis Diagram 기

반으로 변수 노드 연산을 홀수 항, 검사 노드 연산을 
짝수 항으로 간주하여 신경망 형태로 확장한 뒤 각 메
시지 전달 단계에 학습 가능한 가중치를 도입한 디코

딩 성능 개선안이다[2]. Neural BP 의 식은 다음과 같다. 
이때 식(3)은 홀수 항, 식(4)는 짝수 항으로 𝑙(는 로

그우도비(LLR), e 는 edge, v 와 c 는 각각 변수노드, 검사

노드를 뜻하며 ′기호는 해당 항목을 제외한 나머지 항
목, 그리고 w 가 가중치로 곱해지는 형식이다. 

𝑥!,#$(&,') = 2 tanh)*( ∏ 𝑥!)*,#+(#!$(&,'!),&,&!) )            (4) 
Neural MS 의 경우 (3)을 (5)로 대체하여 계산한다. 

𝑥!,#$(&,') = min
(#!$(&,'!),&,&!)

|𝑥!)*,#!| . 𝑠𝑔𝑛(𝑥!)*,#!)
(#!$(&,'!),&,&!)

 

(5) 
식 (6)은 i 를 2L+1(L 은 코드길이)까지 진행했을 때 의 
최종 결과값(𝑜()이며, 이때	 𝜎는	 sigmoid	함수이다.	

𝑜( = 𝜎(𝑤+,-$,(𝑙( + ∑ 𝑤+,-$,(,.!𝑥+,,.!.!&((,"!) )             (6) 

𝑥!,#$(&,') = tanh2
1
24	𝑤!,&𝑙& + 9 𝑤!,#,#!𝑥-.,#!

#!$(&,'!),','!
:; 

 (3) 



그림 1. Sample 수에 따른 BCH (63, 36)의 BCE loss 비교 
2.3 안정화 알고리즘 
 Neural MS 구조의 학습 과정에서 비선형 함수의 
gradient 단절 문제를 해결하기 위해 Straight-Through 
Estimator(STE) 기법이 활용될 수 있다. STE 는 forward 
pass 에서는 기존 Min-Sum 의 hard decision 을 유지하고, 
backward pass 에서는 연속적인 soft 함수로 근사하여 
gradient 를 전달한다. 본 연구에서는 아래와 같은 수식

을 사용하였다[3]. 
𝑆𝑇𝐸(𝑥) = 𝑥1234,4.52"1 − (𝑥6785 − 𝑥6785,4.52"1) (7) 

또한, 검사 노드에서 변수 노드로 전달되는 메시지를 
soft-min 함수로 근사하여 미분 가능하도록 구성하였다. 
이때 soft-min 은 Log-Sum-Exp (LSE) 형태로 정의되며 
파라미터 𝛽가 무한대로 수렴할수록 true minimum 함수

에 가까워진다[4]. 

min
6785

(𝑥$, 𝑥+, … 𝑥9) = 	−
1
𝛽 log	P exp	(−𝛽𝑥*)

%

 
(8) 

LLR Scaling 은 반복 횟수가 적은 초기 단계에서 메시

지 값의 반영 비율을 제한하여, 불안정한 추론 신호로 
인한 성능 저하를 방지한다. 특히, MS 구조에서 발생할 
수 있는 메시지 과대 반영을 완화하기 위한 scaling 
factor 𝑘는 iteration 에 따라 점진적으로 증가하는 하이

퍼볼릭 탄젠트 함수로 정의되는데, 이 값은 이후 식(9)
와 같이 𝑚(에 곱해져 값을 조절한다. 

𝑘 = tanh(0.1 ∗ 𝑚𝑖𝑛(10, 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛)) (9) 
 
3. 신경망 메시지 전달 복호 성능 분석 
본 실험에서는 PCM(Parity Check Matrix)로 BCH (63,36), 

max Iteration 10, training num 10000, epoch 500(총 5 ∗
10:sample 수), target uncorrected error 200 로 설정하였다. 
그림 1 은 iteration 이 10 일때 BCE loss 0.001 에 도달하

기까지의 sample 수 대비 loss 변화를 나타낸다. STE 적
용 시 전반적으로 수렴 속도가 향상되었으며, threshold 
loss 달성에 필요한 sample 수 역시 4.5 ∗ 10:  수준으로 
감소하였다. LLR scaling 적용 모델은 모든 epoch 구간에서 
loss 감소 폭이 가장 컸고 Neural MS 대비 절반의 sample 수로 
threshold loss에 도달했다. 
그림 2는 동일한 실험 조건에서 Eb /N0 =6dB일 때, 학습 샘플 

그림 2. Eb/N0 =6, 샘플수에 따른 BCH (63, 36)의 BER 
비교 

수에 따른 BER(Bit Error Rate) 변화를 비교한 결과를 나타낸다. 
샘플 수가 2.5 ∗ 10:을 초과하면, 모든 모델에서 BER 성능이 
수렴하는 양상을 보이며, 이후 성능 차이는 통계적으로 미미한 
수준으로 축소된다. LLR Scaling 을 적용한 Neural MS 모델은 초
기 학습 단계에서 BCE loss 가 더 낮게 형성되었음에도 불구하

고, BER 기준으로는 Neural SP 와 유사한 성능 수준에 도달하였

다. 이는 LLR Scaling 기법이 학습 수렴 속도에는 기여하나, 최
종 복호 성능 향상에는 제한적인 영향을 미칠 수 있음을 시사

한다. 
4. 결론 
본 연구는 Neural MS Decoding 의 학습 최적화를 위한 

기법으로 STE 와 LLR scaling 을 적용하고, 그 효과를 
sample 수 별 BCE loss, BER 분석을 통해 정량적으로 
비교하였다. 실험 결과, LLR scaling 기법이 기존 Neural 
MS 구조의 성능을 향상시키는 것을 확인하였다. 

향후에는 다양한 부호율 및 코드 길이에 대한 일반

화 가능성 검토, LLR scaling factor 의 정규화 혹은 다중 
계층 적용 가능성, 하드웨어 효율성 평가 등을 통해 
해당 기법의 실용성을 보다 넓은 스펙트럼에서 검증할 
필요가 있다. 
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