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# 1. OSN3} TBS®] S~ A8 Age vl (A4 = 0.80)

Class | SN Val Acc (%) | TBS Val Acc (%) | A Accuracy | Number of Data
Center 27.16 97.40 +70.24 346
Donut 69.18 78.05 +8.87 41
Edge-Loc 27.71 70.66 +42.95 242
Edge-Ring 39.34 76.17 +36.83 856
Loc 943 84.57 +75.14 162
Near-full 97.89 80.00 -17.89 5
Random 80.54 91.80 +11.26 61
Scratch 1.30 20.00 +18.70 50
None (Normal) 50.29 100.00 +49.71 110701
Total Accuracy | 50.29 93.30 \ +43.01 | 112464
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Coverage | Gambler SAT TBS
1.00 90.38 93.83 91.12
0.90 87.95 95.42 92.34
0.80 83.40 96.75 93.27
0.70 99.70 97.63 93.83
0.60 85.25 97.85 93.41
0.50 78.90 98.12 93.24
0.40 71.42 98.35 93.06
0.30 65.10 98.68 92.88
0.20 59.34 99.12 92.63
0.10 52.87 99.55 92.31
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