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요 약

무인 항공기(Unmanned Aerial Vehicle, UAV)는 제한된 온보드 배터리 용량으로 인해 운영 수명에 심각한 제약을 받고 있다. 이러한
문제를 해결하기 위해, 다양한 충전 기술들이 연구되어왔으며, 그 중 레이저 충전 기술은 고출력의 에너지를 UAV에 무선으로 전송함으로써
지속적인 운영을 가능하게 한다. 본 연구는 UAV가 지상 사용자에게 다운링크 서비스를 제공하기 위해 기지국 역할을 수행하는 레이저 충전
기반 다중 UBS(UAV-based Base Station) 네트워크를 고려한다. 이러한 네트워크 환경에서, 에너지 효율성과 통신 처리량을 동시에
향상시키기 위해, 본 논문에서는 DQN(Deep Q-Network) 기반 UBS 위치 및 전송 전력 제어 기법을 제안한다. 제안된 기법은 에너지
충전 및 소비, 통신 품질 등 상태 정보를 바탕으로 통신 성능과 에너지 효율 간의 트레이드오프를 고려한다. 시뮬레이션을 통해 제안방안이
기존 기법 대비 통신 성능과 에너지 효율 모두에서 우수한 성능을 가지는 것을 보인다.

Ⅰ. 서론

무인항공기(Unmanned Aerial Vehicle, UAV)는 저비용, 유연한 배치,

운용의 용이성 등의 장점으로 다양한 분야에 활용되고 있다. 특히 6세대

이동통신에서는 UAV가 지상 사용자에게 서비스를 제공하는 UAV 기반

기지국(UAV-based Base Station, UBS)의 활용을 위한 연구도 활발히

진행되고있다 [1]. UBS는 3차원 공간에서위치를유연하게조정할 수있

어 LoS(Line-of-Sight) 링크 형성이 용이하고, 고품질 통신이 가능하다.

그러나 제한된 배터리 용량으로 운용 시간이 짧다는 한계가 있으며, 이를

보완하기위한다양한에너지공급방식이제안되었다. 그 중 레이저충전

기술은수십 km 거리에서도 안정적인에너지 전송이 가능해 장기 운용에

적합한대안으로 주목받고있다 [2]. UBS 네트워크의효율적운용을위해

서는 위치 및 전송 전력의 정교한 제어가 필수적이며, 특히 통신 품질과

에너지효율을동시에고려해야한다. 본 논문에서는이러한두목표를균

형있게달성하기위해, 레이저충전기반 UBS 네트워크를대상으로심층

강화학습 기반 제어 기법을 제안한다.

Ⅱ. 시스템 모델

본 논문에서는 그림 1과 같이 개의 공중 UBS, 개의 지상 사용자

(Ground User, GU), 개의 지상 레이저 충전 스테이션(Laser Charging

Station, LCS)으로 구성된 무선 통신 네트워크 환경을 고려한다. 지상의

LCS는 레이저 빔을 통해 UBS에 에너지를 지속적으로 전달하고, UBS는

GU에 다운링크 통신 서비스를 제공한다. 또한, UBS가 LCS를 통해 충전

을 하면서 동시에 지상 노드와 통신할 수 있다고 가정한다. UBS는 각 타

임 슬롯마다 에이전트로서 행동을 수행한다.

Ⅱ.1 A2G 채널 모델

A2G(Air-to-Ground) 환경에서 LoS를 고려한 확률적 채널 모델은 다
음과 같다 [3].
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여기서,  는 UBS 가 GU 에게 할당한 주파수 대역폭이다,   
 는

UBS 의통신전송전력이며,  
는 LoS 및 NLoS 링크를고려한평균

경로 손실이다. 는 화이트 가우시안 잡음의 전력 스펙트럼 밀도이며,

은 타임 슬롯 에서의 동일 채널 간섭이다.

Ⅱ.2 레이저 충전 모델

LCS 로부터 UBS 에서 충전된 에너지는 자유공간 광통신

(Free-space Optical Communication, FSO)를 기반으로 다음과 같이 표

현된다 [4].
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을 의미한다.

Ⅱ.3 UAV 전력 소비 모델

본 연구에서는 통신 에너지, 호버링 에너지, 이동 에너지를 포함하는

UAV 전력 소비 모델을 고려한다 [5], [6], [7].
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위 수식은 다음과 같이 표현될 수 있다.
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여기서,  ,  , 은 각각 통신, 호버링, 이동에 소요되는

시간을 의미하며,  은 타임슬롯 에서 UAV 와 연결된 GU의

그림 1. 레이저 충전 기반 UAV 네트워크에서 전송-충전 트레이드
오프를 고려한 DQN 프레임워크
Fig. 1. DQN framework considering communication-charging
trade-off in laser charging-based UAV networks.



그림 2. 2 에이전트 시나리오에서 에피소드 진행에 따른
평균 보상, 통신품질, 충전 및 소모 에너지 성능 비교
Fig. 2. Performance comparison of average reward,
communication quality, charging energy and energy
consumption over episodes in 2-agent scenarios.

수이다. 
는 온보드 회로 전력 소비를 의미한다. 은 UAV의 로터

수, 는 뉴턴 단위의 추력, 는 공기의 유체 밀도, 는 로터 디스크

반경이다. 와 는 수평 이동 거리, 는 수직 이동 거리를

나타낸다. 와 는 각각 수평 및 수직 방향의 전력 소비를 나타내며,

와 는 각 방향의 속도이다.

Ⅲ. 분산 심층강화학습 기반 위치 및 전송전력 최적화 기법

본 연구에서는 DQN 기반의 위치 및 전송 전력 제어 기법을 제안한다.

각 UBS는독립된 에이전트로 작동하며, 환경 변화에따라실시간으로 상

태를 인식하고 최적의 행동을 학습한다.

- 상태(State): 에이전트 의 상태는 타임 슬롯 에서 UBS 의 3차원

좌표 및 통신 품질, 충전량, 그리고 소모량으로 정의된다.
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- 행동(Action): 에이전트 는 각 타임 슬롯에서 3차원 이동과 전송 전력

을 제어하는 9개의 행동 중 하나를 취할 수 있다. 행동 집합은 다음과 같

이 정의된다.
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- 보상(Reward): 본 연구에서는 통신 성능과 에너지 효율을 함께 고려하

기 위해, 두 요소를 결합한 형태의 보상 함수를 설계하였다.
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여기서 은 통신품질에대한 가중치계수이고 는 충전과소비사이

의 에너지 차이에 대한 가중치 계수이다. 두 계수는    의관

계로 설정된다. 이 증가할수록 에이전트는 통신 품질 향상에 더 많은

가중치를 두게 되고, 가 증가할수록 에너지 효율성에 더 많은 가중치

를 두게 된다.

Ⅳ. 시뮬레이션 결과 및 결론

그림 2는 2 에이전트 시나리오에서 에피소드 진행에 따른 제안방안 및

벤치마크의 성능을 나타낸다. 그림 2(a)에서 모든 제안 방안이 매 슬롯마

다 무작위 행동을 하는 RA(Random Action)보다 높은 평균 보상을 달성

함을 보인다. 그림 2(b)의 평균 통신 품질에서는   인 경우에 가장

우수한 통신 성능을 보이는 반면, 그림 4(c)와 (d)의 충전 에너지 및 소모

에너지 측면에서는  인 경우에 가장 효율적인 에너지 관리를 보인

다.  인경우는통신품질과에너지효율사이의균형을유지하며,

실제 네트워크 운영에서 효과적인 절충안을 제공할 수 있음을 시사한다.

시뮬레이션 결과를 통해 기존 벤치마크 기법에비해제안기법이 평균 보

상, 데이터 품질, 에너지활용도측면에서우수한성능을달성함을 확인하

였다.
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