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요 약

본 연구는 대표적인 거대 언어 모델(Large Language Model) 중 하나인 BERT(Bidirectional Encoder Representations from
Transformers) 기반의 BEiT3(Bidirectional Encoder representation from Image Transformers)를 활용하여 5G DMRS 신호의해석이
가능한지검증한다. 전통적인신호처리 과정이언어적 방식으로해석될 수 있는 가능성을실험적으로 분석한다. 실제 5G 기지국으로부
터 직접샘플링한 DMRS 시퀀스신호를별도의신호처리 과정을 전혀거치지않은 IQ 데이터의 형태로 입력하여 시퀀스의 Index 값을
출력하였다. 또한, BEiT3에 적용하기 위해, 실수부, 허수부, 진폭 값을 RGB 포맷으로 전처리 및 확장하는 절차를 수행하였다. 이후
성능의 검증을 위하여 서로 다른 SNR(Signal-to-Noise Ratio) 값으로 3개의 Case를 구성하였다. 그 결과, 약 16.47dB의 상대적으로
높은 SNR 환경에서는 99.2%의 높은 분류 정확도를 기록하였다. 즉, 실제 5G 신호를 일종의 언어로 처리하기 위한 기존의 전통적인
신호처리과정을 대체하고, 언어 모델만을 통해 해석할 수있음을 보여준 최초의 사례이다. 추후 5G 데이터에 적합한 토크나이저 설계,
데이터 증강 및 노이즈 적응형 전처리 기법 등을 통해 추가적인 성능이 기대된다.

Ⅰ. 서론

최근 연구 동향에 따르면, LLM(Large Language Model)은 언어 번역,

텍스트 생성, 질의응답등 다양한 자연어 처리 작업에서 괄목할만한 성능

을 보여주고있다 [1]. 또한, 비정형데이터를언어적구조로해석할수있

는 LLM의 잠재력이 주목받으면서, 이러한 특성은 비언어적 도메인에도

적용될 수 있는 가능성을 보여주고 있다 [2]. 하지만, 5G 통신 시스템의

신호들을 LLM의 관점에서 해석하려는 시도는 거의 이루어지지 않고 있

다. 본 연구에서는 이에 대한 탐색을 통하여 5G 신호 해석의새로운방향

성을 제시할 수 있다. LLM을 효과적으로 적용하기 위해서는, 5G 신호가

언어적 구조로 해석될 수있는지 검토하는과정이 선행되어야 한다. 기존

의 신호처리 방식은 주로 수치적, 통계적 표현에 기반하지만, LLM은 시

퀀스 내의 의미적 패턴이나 구조 학습에 최적화되어 있다. 이를 위해 5G

신호의 구조를 언어적 특성으로 변환할 수 있는지에 대한 검증이 필요하

다.

본 논문에서는 LLM 기반 신호처리의 언어적 해석 가능성을 탐색하기

위한 단계로, BERT(Bidirectional Encoder Representations from

Transformers) 기반 모델인 BEiT(Bidirectional Encoder representation

from Image Transformers)를 활용하여 복조참조신호(DeModulation

Reference Signal, DMRS) 데이터셋에 대해 분류 실험을 수행한다.

DMRS는 시퀀스 형태의 신호로 구성되기 때문에 BEiT 모델에 적합하도

록사전 전처리가필수적이다. 이에 따라, 시각적표현으로변환한 DMRS

시퀀스를 BEiT를 통해 분석함으로써, 향후 LLM이 무선 신호를 언어적

구조로 해석할 수 있는 잠재성을 실험적으로 탐색한다.

Ⅱ. 본론

1. 데이터 전처리

신호 데이터의 형태변환을 위해 이미지화기법을활용한다. RGB 모델

을 기반으로 DMRS 신호의 실수부와 허수부를 각각 R, G 채널에 할당하

고, B 채널에는 신호의 진폭 값을 할당한다. 식(1)은 각 채널을 구성하는

DMRS 요소를 RGB 모델로 표현한 수식이다 [3].
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식(1)의  는 하나의 DMRS 실수부(I)와 허수부(Q)의 각 구성 요소 위치
를 나타내며,  은 입력 신호의 시퀀스 길이이다.

위 방법을기반으로 DMRS 신호데이터를한변의길이가  인 ×
크기의 정사각형 이미지로 변환하며,  는    로 계산된다.  , 에  와  를매핑하고,  에는 진폭값인    를 매핑한다.
하지만, 이미지화한 길이에 비해 시퀀스 길이가 부족할 수 있다. 즉,

 ≠ 인 경우에는   만큼의 원본 신호 요소를 반복하며, 이를

통해 원본 시퀀스의 정보 손실 없이 전처리를 수행할 수 있다.

2. BEiT 기반 분류

BEiT는 다양한 비전 태스크에서활용되는자기지도 학습비전표현 모

델로, 자연어 처리 분야의 BERT 기반 사전학습 방식을 비전 트랜스포머

에 적용한 구조이다. 이 모델의 핵심 태스크는 MIM(Masked Image

Modeling)으로, 입력 이미지를 일정 크기의 패치로 분할하고, 일부 패치를

마스킹한후, 마스킹된부분의시각적토큰을복원하도록학습한다 [4]. 이러

한 구조를 통해 이미지의 공간적 구조와 시각적 패턴을 효과적으로 학습

할 수 있어, 사전학습된 모델은 이미지 분류(Image Classification), 의미

론적 분할(Semantic Segmentation) 등 다양한다운스트림태스크에 파인

튜닝하여 사용할 수 있다. DMRS 데이터를 이미지로 변환한 후, 식(2)에

따라, 모델의 최소 입력 요건(224*224*3)을 만족하도록 반복 확장한다.
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식(2)의  은 최종 입력의 한 변 길이이며  는 BEiT의 최소 입력 크기
(224)를 의미한다. 이러한과정을통해 생성된 이미지는모델의최소 입력

요건 이상으로 구성됨으로써, BEiT에 안정적으로 입력될 수 있는 ×
형태를 보장한다.

그림 1. DMRS 신호 데이터 이미지화 및 BEiT3 파인튜닝 과정

3. 실험 환경 설계

실험 환경으로 USRP(Universal Software Radio Peripheral) 2대를 통

해 수집한 실제 5G에 정의된 DMRS 신호 데이터를 사용한다. -4.66dB ~

23.37dB 범위를 갖는 12가지 SNR 환경에서 5G 데이터를 수집하였으며,

데이터셋은 8개의 Index로 구성되어 Index 당 20,000개의 샘플을 포함한

다. 실제 5G 무선채널환경을반영할수있는데이터수집환경을소프트

웨어 모뎀을 활용하여 직접 구성하였다. DMRS 신호 데이터는 실수부와

허수부로 나뉘며 144개의 시퀀스 길이를 갖는다. DMRS Index를 분류하

기위해, BEiT3 모델을이미지분류태스크에대해 DMRS 신호데이터셋

으로파인튜닝하여실험을진행한다. BEiT3는 기존 BEiT보다더 좋은분

류 성능을 보이도록 개선되었으며, 1.9B 파라미터를 보유한 대규모 모델

이다. 이는 LLM 적용에 앞서 사전 검증 모델로 활용하기에 충분한 규모

임을나타낸다 [5]. 또한, 다운스트림태스크에 따라파라미터가 선택적으

로 활성화되어, 고성능 GPU가 제한된 환경에서도 효율적으로 실행할 수

있어 실험에 적합하다.

4. 실험 결과

실험은 다양한 SNR 환경(23.37dB ~ -2.99dB)과 고정된 Index 범위

(0-7) 조건에 따른 분류 성능 변화를 분석하기 위해, 평균 SNR에 따라

16.47dB, 3.53dB, -2.90dB의 3개 Case로 구성한다. 또한, 학습 데이터의

양에 따른 성능을 확인하기 위하여 샘플 데이터의 수가 80,000개, 40,000

개, 20,000개인 경우의 성능을 관찰한다. 실험의 평가지표로는 Index를 정

확하게 분류한 비율인 분류 정확도를 사용한다.

그림 2는평균 SNR 변화및샘플수에따른모델의분류정확도를나타

낸다. 높은 SNR 환경(16.47dB)에서는 99.2%의 높은 정확도를 보이나, 비

교적 낮은 SNR 환경일수록 모델의 성능이 낮아짐을 확인할 수 있다. 또

한, 높은 SNR 환경에서는샘플 수가 20,000개 이하로감소하여도 93% 이

상의 정확도를 유지하는 반면, 낮은 SNR 환경에서는 전반적으로 성능이

저하되는 경향을 보인다. 이러한 결과는 BEiT3가 높은 신호 품질 환경에

서는우수한성능을보이지만, 수신 신호의왜곡및손실이심화되는낮은

SNR 환경에서는 분류 성능이 다소 저하됨을 알 수 있다.

그림 2. 평균 SNR 변화 및 샘플 수에 따른 정확도 비교

Ⅲ. 결론

본논문에서는 LLM을 통한신호의언어적이해및처리가능성을사전

검증하기 위해, 5G DMRS 신호를 전처리하여 BEiT3 모델에적용하였다.

실험 결과, 높은 SNR로 구성된 환경에서는 99.2% 이상의우수한 분류성

능을 기록하였다. 이러한 결과는 높은 신호 품질 환경에서 신호처리 과정

이 언어적 방식으로 해석될 수 있음을 보인다. 또한, 이를 통해 전통적인

신호처리 과정을 생략하고 언어 모델만을 사용하여 신호를 처리할 수 있

는가능성을제시한다. 향후 노이즈가많은환경을반영한데이터설계및

전처리 전략을 통해 성능 향상을 기대할 수 있다.
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