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요 약  

 
본 논문은 트랜스포머 기반 시맨틱 통신의 최적화를 위한 핵심 기술들을 모델 가중치 압축, 시맨틱 표현 수준 압축, 지식 

증류, 시스템 관점 최적화의 네 가지 범주로 분류하고, 각 기법의 적용 사례와 성능 특성을 비교 분석하였다. 또한 향후 

시맨틱 통신 시스템 설계에 미치는 영향을 파악하기 위하여 다양한 기법들의 통합적 연구의 필요성을 논의하였다. 

 

 

Ⅰ. 서 론  

시맨틱 통신(Semantic Communication)은 정보의 

‘의미적 전달’을 목표로 하는 통신 시스템이다. 이 

시스템에서 송신기는 데이터의 의미론적 표현만을 

추출하여 전송하고, 수신기는 해당 표현을 바탕으로 원래 

정보를 재구성한다. 의미론적 표현만을 전송하면 비트 

단위 무결성을 전제로 한 기존 통신 시스템의 전송 

비효율을 제거할 수 있어, 전송 효율과 통신 신뢰도를 

동시에 향상시킬 수 있는 방식으로 주목받고 있다 [1]. 

시맨틱 통신의 ‘의미 추출-복원’ 단계에서 딥러닝 기반 

트랜스포머(Transformer)가 핵심 엔진으로 널리 

채택되는데, 이는 self-attention 메커니즘 덕분에 

텍스트·이미지·음성 등 다양한 포맷에 적용 가능하고 

데이터 내재 정보의 장거리 의존성을 정밀하게 학습할 

수 있기 때문이다 [2].  

그러나 대규모 트랜스포머 모델은 높은 연산 복잡도와 

큰 메모리 용량을 요구한다. 이러한 요구 사항은 시맨틱 

통신을 다양한 환경에 적용하는 데 큰 제약으로 

작용한다. 실시간 처리를 위해서는 모델 크기를 

경량화하고, 통신 상태에 따라 모델을 적응적으로 활용할 

수 있도록 시스템을 최적화할 필요가 있다.  

본 논문은 트랜스포머 기반 시맨틱 통신의 최적화 

핵심 기술을 모델 가중치 압축(Weight-Level 

Compression), 표현 수준 압축(Semantic 

Representation Compression), 지식 증류(Knowledge 

Distillation)를 활용한 모델 축소, 시스템 관점 최적화의 

네 가지 범주로 조사하였다. 실제 연구들은 이들 기술을 

복합적으로 결합하여 자원을 절감하면서도 의미 정보를 

보존하고 있으며, 본 논문은 각 기법의 원리와 무선 

시뮬레이션 결과를 토대로 이러한 성과를 

비교·분석하였다.  

 

Ⅱ. 본론  

모델 가중치 압축(Weight-Level Compression)은 

부동소수점 파라미터를 저비트 정수로 치환해 모델 파일 

크기와 메모리 사용량을 동시에 줄인다. IAQ [3]는 

Vision Transformer 의 어텐션 점수를 이용해 ‘가중치 

양자화 오차 최소화’ 문제를 볼록 최적화 문제로 

정식화하고, 오차 감소 폭이 가장 큰 패치에 비트를 순차 

할당하는 incremental allocation 과 KKT 기반 워터필링 

해석식을 제안하였다. 실험 결과, 양자화 압축률 

ρ   =  0.125 에서도 MIRO 데이터셋 정확도 93 % 

이상을 유지하며 Fixed-Q 및 Top-k 대비 5– 8 %p 

높은 성능을 달성하였다. 

시맨틱 표현 수준 압축(Semantic Representation-

Level Compression)은 인코더가 생성한 시맨틱 표현을 

양자화·부호화해 전송 효율과 의미 보존을 동시에 

확보한다. GOS-VAE 는 송신기에 경량 VQ-VAE 

인코더를, 수신기에 디코더와 OneFormer 를 분할 

배치하여 r  =  4 에서 mIoU 57.3 %를 기록하고, 기본 

VQ-VAE 대비 4.3 %p 성능 향상과 파라미터 수 92 배 

절감을 동시에 달성하였다. 이러한 코드북 최적화 및 

의미 중심 비트 할당은 동일 대역폭에서 PSNR 을 3– 4 

dB 높이고 시각적 품질도 향상시킴을 보여준다 [5]. 

uJSCC 는 시맨틱 특징을 정수 인덱스로 매핑하는 벡터 

양자화를 통해 아날로그적 JSCC 를 기존 디지털 PHY 와 

자연스럽게 호환시키는 범용 (Universal) 접근을 

제시하였다. [4] 

지식 증류(Knowledge Distillation) 기반 모델 축소는 

대규모 교사 모델의 지식을 소형 학생 모델로 이전해 

경량화하면서도 성능을 유지한다. KD-MU-SemCom 

[7]은 Swin-Transformer 디코더(teacher)와 경량 

디코더(student)를 FRENCA-KD 절차로 학습하여 

AWGN SNR = 3 dB 환경에서 PSNR 을 0.68 dB, MS-

SSIM 을 0.08 만큼 향상시키고 연산량을 17 % 

절감하였다. KD-SC-MultiUser [8]는 DeepSC 계층을 



교사로 증류한 학생 모델이 SNR  <  9 dB 구간에서 

BLEU 점수를 기준선보다 10 %p 이상 높이고 

파라미터를 약 44 % 줄였다. 또한 FSSC [9]는 연합 

학습, 모델 슬라이싱, KD 를 결합해 단말 모델 크기를 

0.05 MB 까지 축소하면서도 PSNR 을 추가로 2 dB 

개선하였다. 

시스템 관점 최적화(System-Level Optimization)는 

모델 구조와 연산 위치를 조정해 엔드 투 엔드 자원 

효율을 극대화한다. Swin-Transformer Semantic 

Communication(STSC)은 윈도우 어텐션과 두 차례 

Patch Merging 을 통해 연산량을 O(N²)에서 O(N)으로, 

토큰 수를 1/16 로 줄여 압축률 0.33 에서 CNN-JSCC 

대비 평균 PSNR 을 5 dB 향상시켰다. 이를 연합 

학습으로 확장한 Federated STSC(FSSC)는 중앙 데이터 

이동 없이 FedAvg 로 60 round 이내에 수렴하여 

중앙집중식 대비 MSE 를 10 % 낮추고(PSNR 2– 3 dB 

증가) 서버 부하도 분산시켰다 [9]. 이러한 모델·채널 

양면 경량화와 학습·추론 분산 기법을 통합 적용하면, 

실시간 시맨틱 통신에서도 자원 절감과 품질 보존을 

동시에 확보할 수 있음을 확인하였다. 

표 1 은 앞서 소개한 논문들의 세부 기법과 주요 

성과를 요약한 것이다. 

 

표 1 경량화 기법 별 주요 성과 

경량화 기법 세부 기법 주요 성과 

모델 가중치 

압축 

중요도 가중 

비트 할당 

양자화 

동일 정확도 기준 

전송량 20 –  40 % 추가 

절감 

동일 ρ 기준 

Top-1 정확도 향상 [3] 

어텐션 유도 

다중 해상도, 

다단계 양자화 

단일 해상도 대비 

고압축 환경에서 15-

60 %p 정확도 향상 [6] 

시맨틱 표현 

수준 압축 

 

VQ-VAE 기반 

벡터 양자화, 

모듈 경량화 

압축률 r=4 환경 

모델 크기  

99% 감소 

mIo+2.3p, 

전송대역폭 −4.4 KB. 
[5]  

지식 

증류(KD) 

 

KD + 전이학습 기존 반복학습 대비 PSNR 

+1.25 dB / MS-SSIM 

+0.012. [7] 

KD + 후처리 

동적 양자화 

Teacher 모델 대비 

 Student 2: 모델 크기 

44% 감소, 저 SNR 상황 

BLEU 10 %p 향상 

[8] 

시스템 관점 

최적화 

System-Level 

Optimization 

JSCC 대비 

STSC: 평균 5 dB PSNR 

향상[9] 

 

Ⅲ. 결론  

본 논문은 트랜스포머 기반 시맨틱 통신 모델의 

성능과 자원 효율성을 동시에 향상시키기 위한 최신 

경량화 기술을 모델 가중치 압축, 시맨틱 표현 수준 압축, 

지식 이전 기반 모델 축소, 시스템 관점 최적화의 네 

범주로 분류하고, 연구 사례를 비교·분석하였다. 분석 

결과, 토큰 중요도 기반 벡터 양자화, 교사-학생 지식 

증류, 분할 추론 및 적응형 전송 등 여러 기법을 복합 

적용한 전략이 실시간 환경에서도 뛰어난 자원 절감 

효과와 성능 우위를 달성함을 확인하였다. 앞으로는 각 

단일 기법과 이들의 융합 방식이 통신 시스템 성능에 

미치는 영향을 정량적으로 평가하는 연구가 필요하며, 

이를 통해 시맨틱 통신 시스템 설계에 최적화 기법을 

체계적으로 적용할 수 있을 것으로 기대된다.  
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