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요 약

본 논문은 저피탐 통신 환경에서 신호 유무를 판단하기 위해 YOLO(You Only Look Once) 기반 객체 탐지 기법을 활용한

스펙트럼 센싱 방법을 제안한다. 시간-주파수 영역의 스펙트로그램을 입력으로 하여 YOLOv5와 YOLOv8 모델의 신호 유무

판단 성능을 비교하였으며. 오탐률 0% 조건에서정탐률을 분석하였다. 실험 결과, 정탐률 65% 기준에서 YOLOv8은 YOLOv5

대비 약 1.9dB 향상된 성능을 보였다. 이를 통해 실시간 스펙트럼 센싱 기술에 있어 YOLO 기반의 객체 탐지 기법의 적용

가능성을 확인하였다.

Ⅰ. 서 론

전시 상황에서 적군의통신 신호를 조기에탐지하고분석하는것은 작전

상황을정확히 파악하고선제대응을가능하게 하므로전술적의사결정에

매우 중요한 역할을 한다. 적군이 사용하는 저피탐(LPI, Low Probability

of Intercept) 통신 시스템은 전파 노출을 최소화해 레이더 및감청시스템

의 탐지되지 않도록 설계된 통신 방식으로, 은밀한 정보를 주고받기 위해

사용된다.[1] 대표적으로 주파수를 빠르게 변화시키는 주파수 호핑

(Frequency Hopping), 송신 전력을 매우 낮게 설정하는 저전력 송신

(Low-power Transmission) 등 다양한 기술을 활용해 탐지를 어렵게 만

든다. 따라서적군의저피탐통신신호를판단하는기술개발또한중요하

다. 최근에는딥러닝기반의객체탐지기법을활용한스펙트럼센싱기술

이 주목받고 있으며, 특히 시간-주파수 영역에서 나타나는 미약한 신호

패턴을 스펙트로그램으로 변환한 뒤 이를 인공지능 모델로 분석함으로써

저피탐 통신 신호를 탐지하는 방안이 연구되고 있다.[2]

본 논문에서는 스펙트럼 센싱에서 신호 유무를 판단하기 위해

YOLO(You Only Look Once) 기반의객체탐지 모델을 활용한다. YOLO

는 CNN 기반의 one-stage detector로, 입력 이미지를 한 번만 통과시켜

객체의 위치와 클래스를 동시에 예측하는 실시간 객체 탐지 모델이다. 본

연구에서 시간-주파수 영역에서 생성된 스펙트로그램 상에 신호는 가로

로긴막대형태로나타나며, 이를 객체로간주할수있다. 객체 탐지모델

인 YOLO를 활용하면스펙트로그램 상의신호유무를판단할 수있다. 따

라서 YOLOv5와 YOLOv8을 활용하여 신호 유무 판단 성능을 비교 분석

한다.

Ⅱ. 스펙트럼 센싱 시스템 모델

본 논문에서제안하는 YOLO 기반 스펙트럼 센싱은 수신된 광대역신호

의 스펙트럼 정보를 활용하여, 관찰 중인 주파수 대역 내 신호의 존재 여

부를 객체 탐지(Object Detection) 방식으로 판단한다. 그림 1은 YOLO

기반 스펙트럼 센싱의 전체적인 처리 과정을 나타낸 것이다. 수신된 신호

를 시간 영역에서 주파수 영역으로 변환하기 위해 FFT(Fast Fourier

Transform)를 적용하여 변환하고, 그 결과를시간축으로 누적한뒤 제곱

하여시간-주파수영역의 2차원스펙트로그램을 생성한다. 생성된스펙트

로그램은 YOLO 모델의 입력으로 사용되며, YOLO 모델은 입력된 스펙

트로그램 상에서 신호가 존재할 것으로 판단되는 위치에 대해 예측 바운

딩 박스를 출력한다. 이 예측 바운딩 박스로 신호 유무를 결정한다.

그림 1. YOLO 기반 스펙트럼 센싱 블록도

Ⅲ. 스펙트로그램

스펙트로그램은 FFT 크기 256, 관찰 길이 128의 2차원 흑백 이미지로

시간-주파수 영역의 전력 분포를 시각화한 것이다. 각 픽셀은 정규화된

전력값을나타내며, 전력이 클수록 밝게, 작을수록 어둡게 표현된다. 그림

2는 다양한 SNR 조건에서 생성된 스펙트로그램 예시를 보여준다. 그림

2의 (a)는 SNR –4dB로 신호의 전력이 잡음의 전력보다 작아 정규화 후

신호가 잡음에 묻혀 흐릿하게 나타나며, (b)는 SNR 8dB로 신호의 전력이

잡음의 전력보다 상대적으로 커서 신호와 잡음이 뚜렷하게 구분된다. (c)

는 신호의 전력이 존재하지 않아 잡음의 전력만 정규화되어 무작위한 분

포의 스펙트로그램으로 표현된다.



그림 2. 스펙트로그램 이미지

(a) SNR=-4dB, Signal ON (b) SNR=8dB, Signal ON (c) Signal OFF

Ⅳ. 예측 바운딩 박스를 활용한 판단 기준

그림 3은 생성된 스펙트로그램을 입력으로 하여 YOLO 모델이 신호 유

무를 판단한 결과를 보여준다. 이때, 신호의 실제 위치를 나타내는 실제

바운딩 박스(Ground Truth Bounding Box)와 YOLO 모델이생성한 예측

바운딩 박스(Predicted Bounding Box) 간의 IoU(Intersection over

Union)가 0보다큰 경우, 정탐(True Positive)으로 간주한다. 그림 3의 (a)

는 정탐의 예시를 보여준다. 반면, 실제 바운딩 박스가 존재하지만 예측

바운딩 박스가 없거나 IoU가 0인 경우는 미탐(False Negative)으로 분류

된다. (c)는 이러한 미탐의 예시를 보여준다. 또한 실제 바운딩 박스가 존

재하지 않을 때, 예측 바운딩 박스가 생성된 경우는 오탐(False Positive)

으로 판단하며, (b)가 오탐의 예시를 보여준다. 이러한 방식으로 각 스펙

트로그램에 대해 신호 유무를 구별한다.

그림 3. YOLO 모델의 신호 탐지 결과

(a) 정탐 (b) 오탐 (c) 미탐

Ⅴ. YOLO 모델 학습 설정

본논문에서는 YOLO의버전 중각각 YOLOv5s 모델과 YOLOv8s 모델

을 사용한다. 모델 학습 시 YOLOv5 모델의 경우, Optimizer는 AdamW,

Learning Rate는 0.001, Batch Size는 32로 설정하고 YOLOv8 모델의 경

우, Optimizer는 AdamW, Learning Rate는 0.001, Batch Size는 64로 설

정한다. 두 모델 모두 사전 학습 가중치는 사용하지 않고 조기종료(Early

Stopping)를 사용한다.

Ⅵ. 모의실험 환경 및 결과

모의실험 데이터는 MATLAB으로 생성하였고, 모델 학습과 검증은

PyTorch로 수행하였다. 훈련 및 검증 데이터는 SNR –10~20[dB]범위에

서무작위한 SNR을갖도록각각 50,000개와 10,000개씩 생성하였다. 테스

트 데이터는 SNR –10~20[dB] 범위에서 1dB 간격으로 10,000개씩, 총

310,000개로 구성되며 Busy와 Idle의 비율은 1:1로 구성하였다.

그림 4는 YOLOv5와 YOLOv8의 오탐 성능을 비교한 결과를 보여준다.

두 모델의 공정한비교를 위해 각각의 Confidence Threshold를 조절하였

고, YOLOv5는 0.5, YOLOv8은 0.8로 설정하였다. 이 조건에서 두 모델

모두 SNR –10~20[dB] 범위에서 오탐률(False Alarm Rate) 0%를 보여

준다.

그림 4. SNR에 따른 YOLOv5 및 YOLOv8의 오탐 성능 그래프

그림 5는 YOLOv5와 YOLOv8의 정탐 성능을 비교한 결과를 나타낸다.

정탐률 65%를 기준으로 비교했을때, YOLOv8은 YOLOv5보다 약 1.9dB

우수한 성능을보인다. 이는 YOLOv8이 더 낮은 SNR 환경에서도신호를

효과적으로 검출할 수 있다는 것을 보여준다.

그림 5. SNR에 따른 YOLOv5 및 YOLOv8의 정탐 성능 그래프

Ⅶ. 결론

본논문에서는저피탐 환경에서의신호탐지를 위해 YOLO를 활용한스

펙트럼 센싱 기법을 제안하였다. 생성된 2차원 스펙트로그램에서 신호를

가로로 긴 객체로 볼 수 있었고 이 스펙트로그램을 YOLOv5와 YOLOv8

모델의 입력으로넣어서신호 유무를 판단하였다. 모의실험 결과, 두 모델

모두 SNR –10~20dB 범위에서 오탐률 0% 조건을 만족하였고, 정탐률이

65% 기준에서 YOLOv8은 YOLOv5에 비해 약 1.9dB 우수한정탐 성능을

보였다. 이 결과는저피탐통신환경에서신호를효과적으로탐지할수있

음을 보여주었고, YOLO 기반 탐지 기법의 적용 범위를 넓히는 데 있어

도움을 줄 수 있을 것으로 기대된다.
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