
문서뷰어의 모놀리식에서 쿠버네티스 기반 MSA 전환과 그 효과
이철순*, 김양중**

한국공학대학교 소프트웨어 융합공학과

{*samwalto, **zeroplus}@tukorea.ac.kr

Transitioning from Monolithic to Kubernetes-based MSA in Document

Viewer and Its Impact
Chulsoon Lee, Yangjung Kim*

Tech University of Korea

요 약

문서뷰어 시스템을 기존 모놀리식 아키텍처에서 쿠버네티스 기반 MSA 로 전환하여 확장

성과 유연성을 확보하고 자동화된 배포 및 장애 격리를 가능하게 하였다. 이를 위해 서비스

단위를 기능별로 분리하고 HPA, Istio, Jenkins 를 활용한 인프라를 구축하여 운영 효율성을

높였다. 그러나 서비스 증가로 운영 복잡성, 문서 변환과 이미지 스트리밍 성능 개선의 한계,

서비스 종속성 문제가 나타났다. 향후 서버리스 아키텍처와 AI 기반 자동화를 도입하여 운

영 효율성을 더욱 개선할 계획이다.

Ⅰ. 서 론

기존 문서뷰어 시스템은 모놀리식 아키텍처로 개

발되어 확장성 부족, 장애 전파, 배포 지연 등의 문

제를 겪었다. 단일 데이터베이스와 결합된 구조는

신규 기능 추가 시 전체 시스템의 테스트와 배포를

필요로 하며, 트래픽 폭주 시 특정 모듈의 장애가

전체 서비스 중단으로 이어졌다. 본 논문은 이러한

문제를 해결하기 위해 쿠버네티스[1] 기반 MSA[2]

로의 전환을 수행한 과정과 그 효과를 분석한다.

Ⅱ. 본 론

1. 전환전략 및 구현

[그림 1]뷰어 기존구조, 모놀리식

[그림 2]MSA 를 적용한 뷰어 구조

[그림 1] 모놀리식 구조 → [그림 2] 쿠버네티스

기반 MSA 구조로의 전환이 시도되었다. 이러한 변

화를 통해 높은 확장성과 유연성을 가지게 되고 장

애 격리가 가능해짐을 알 수 있다. 또한 DevOps 및

자동화에 최적화되어 개발 및 배포가 효율적으로

이루어질 수 있게 되었다.

1.1 아키텍처 분해전략

뷰어의 서비스 단위를 원본파일 다운로드, 문서변

환, 뷰어, 이미지 스트리밍, 사용자 권한 관리 등 기

능별로 분리하였다.

1.2. 쿠버네티스 기반 인프라 구축

[그림 3]HPA 설정

HPA(Horizontal Pod Autoscaler) 설정을 통해

CPU 사용률 30% 초과 시 자동으로 파드 수를

2→10 개로 확장해 트래픽 폭주에 대응하였고 서비

스 메시(Istio) 에서 Istio Ingress Gateway 를 활용

하여 외부 트래픽(예: 웹 브라우저, API 요청)을 관

리하고 TLS 암호화를 적용하였다.

1.3. CI/CD 파이프라인

[그림 4]Jenkins 배포 전

[그림 5]Jenkins 배포 후

Jenkins 를 활용하여 클라우드 서비스 배포,

Kubernetes 의 Pod 배포, 그리고 롤백까지 자동화

하였다.

1.4. 데이터 관리

서비스별 데이터 격리, API 기반 데이터 교환, 이

벤트 기반 데이터 동기화, 분산 트랜잭션 관리 등에

집중하였으며 CQRS 패턴[3]을 참고하여 서비스간

데이터 변경에 대응하였다.

Cloud for MySQL 을 이용해 변환요청일시, 변환

성공여부, 문서유형 등 문서이력정보를 관리하고 원

본문서, 변환결과물을 blob 으로 저장하였다.

2. 전환 효과

2.1. 운영 효율성 향상

각각의 서비스에 대해 1 분 이내(23sec ~ 61sec)

자동 배포 자동 롤백이 가능하게 되었다. 각 서비스

별 별도 대응이 가능해짐에 따라 장애에 좀 더 효

율적으로 대응할 수 있게 되었고 장애 대응을 위한

개발시간 또한 단축할 수 있을 것이라 기대된다.

2.2. 확장성 확보

모놀리식 서비스에 비해 동시사용자 확장이 더

용이해졌다. 문서뷰어의 특성 상 문서 포맷의 종류,

문서 용량, 문서에 포함된 object, page 에 따라 리

소스 사용량이 달라지긴 하지만 HPA 와 클라우드

자원 동적할당을 통해 좀 더 유연하게 대처할 수

있게 되었다.

3. 도전 과제 및 해결 방안

3.1. 운영 복잡성 증가

서비스가 많아질수록 모니터링, 로깅, 배포 등 운

영 관리가 복잡해져, 적절한 인프라와 도구가 갖춰

지지 않으면 오히려 성능 저하로 이어질 수 있고

비용 또한 증가할 수 있다는 점에서 주의가 필요하

다.

3.2. 종속성 문제

MSA 구조에서 각 서비스는 독립적으로 운영되고

특정 서비스의 장애가 다른 서비스에 영향을 미치

지 않아야 한다. 그러나 실시간으로 문서변환이 이

루어지는 문서뷰어의 특성 상 이러한 장애 격리에

어려움이 있다. 예를 들어 원본문서 다운로드에 실

패한 경우 문서변환이 이루어질 수 없다.

서비스는 물리적으로 구분되어 있지만 종속성으

로 인한 문제가 발생한다.

이를 해결하기 위해 회복탄력성(Resilience) 패턴

[4], 비동기 처리 아키텍처[5]와 같은 대응 전략에

대한 구현 및 테스트가 필요하고 뷰어 자체적인 정

책(단순 실패처리 할 것인지, 일정시간 장애대응 대

기 후 처리할 것인지 등)을 마련할 필요가 있다.

3.3. 성능향상

MSA 를 적용하면서 문서변환, 이미지 스트리밍

등의 속도개선을 기대하였으나 효과적이지 않은 것

으로 분석되었다. MSA 는 작은크기의 빈번한요청에

최적화되어 있으나 대용량 이미지 또는 파일에 대

해서는 전송지연이 발생할 수 있다.

위와 같은 사항을 해결하기 위해 하이브리드 아

키텍처(이미지 스트리밍은 모놀리식 유지, 나머지는

MSA 적용)와 같은 사항들이 논의되었으나 개발기

간 내에 적용하는 것에 어려움이 있었다.

3.4. 초기 전환 비용

개발기간(6 개월) 동안 개발 리소스 3 배 이상 증

가하였다. 이를 해결하기 위해서는 단계적 전환 로

드맵 수립 및 DevOps 팀 협업 강화가 필수적이라

고 생각된다.

초기 투입금액이 모놀리식에 비해 크다는 점도

고려되어야 한다. 리소스 자동 증감 등이 구현되기

위해서는 클라우드 기반 서비스를 사용하거나 그에

준하는 하드웨어가 준비되어야 하기 때문이다.

Ⅲ. 결 론

문서뷰어의 MSA 전환은 확장성·성능·유연성 측면

에서 뚜렷한 성과를 거두었으나, 운영 복잡성 관리

와 조직 문화 변화가 성공의 핵심 요소였다. 향후

서버리스 아키텍처, 하이브리드 아키텍처 도입과 AI

기반 자동화를 통해 운영 효율성을 더욱 개선할 계

획이다.

ACKNOWLEDGMENT

본 연구는 고용노동부 및 한국산업인력공단

“2025 년 고숙련 마이스터 사업”과 (주)에스에이티

정보(www.satu.co.kr)의 지원을 받음

참 고 문 헌

[1]https://kubernetes.io/ko/docs/concepts/overvi

ew/

[2]https://learn.microsoft.com/ko-

kr/azure/architecture/guide/architecture-

styles/microservices

[3]https://docs.aws.amazon.com/ko_kr/prescripti

ve-guidance/latest/modernization-data-

persistence/cqrs-pattern.html

[4]https://joylucky7.tistory.com/50#google_vigne

tte

[5]https://f-lab.kr/insight/understanding-async-

queues-and-event-driven-architecture

http://www.satu.co.kr/
https://learn.microsoft.com/ko-kr/azure/architecture/guide/architecture-styles/microservices
https://learn.microsoft.com/ko-kr/azure/architecture/guide/architecture-styles/microservices
https://learn.microsoft.com/ko-kr/azure/architecture/guide/architecture-styles/microservices
https://joylucky7.tistory.com/50#google_vignette
https://joylucky7.tistory.com/50#google_vignette

