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요 약

최근 인공지능 기술의발전과함께 Transformer 기반 모델이다양한응용 분야에서 높은성능을보이며 주목받고 있다. 그러나
모델의 대규모화로 인해 연산량과 메모리 소비가 증가함에 따라 에너지 효율성에 대한 문제가 제기되고 있다. 본 논문에서는
에너지 효율성을 향상시키기 위한 Transformer 최적화 기술들을 조사한다. 또한, 다양한 최적화 기법들의 구조적 특징과 적용
사례를 분석하여 경량화된 Transformer 모델의 가능성과 한계를 탐색한다.

Ⅰ. 서 론

딥러닝 기술의급속한 발전과함께 Transformer 모델은자연어처리, 컴

퓨터 비전, 음성 인식 등 다양한 분야에서 기존 모델을 뛰어넘는 성능을

보여주며핵심기술로자리잡고있다. 특히, 대규모 사전학습을통해 범용

성과 전이 학습 효율성을 동시에 확보할 수 있다는 장점으로 인해 산업

전반에걸쳐폭넓게활용되고있다. 그러나이러한성능향상은막대한계

산 자원과 에너지 소비를 수반하며, 이는 실시간 시스템, 엣지 디바이스,

탄소 배출감소등과같은현실적제약에큰 부담으로 작용한다. 최근에는

이와 같은 문제를 해결하기 위해 Transformer 모델의 경량화와 연산 최

적화를 목표로 하는 다양한 연구가 진행되고 있으며, 이는 에너지 효율성

과환경지속가능성측면에서도중요한기술적과제로인식되고있다. 특

히, 연산량 감소, 파라미터 수 축소, 동적 추론 구조 도입, 저정밀 양자화

등의기법은성능저하없이에너지소비를줄일수있는방향으로주목받

고 있다. 이러한 기술들은 고성능 AI를 제한된 자원에서 실행해야 하는

모바일 디바이스 및 IoT 환경에서 높은 실용성을 가진다. 본 논문에서는

이러한 최적화 기법들의 기술적 흐름과 구조적 특징을 분석하고, 에너지

효율성증진이라는관점에서 Transformer의 미래지향적 설계방안을 모

색하고자 한다.

Ⅱ. 본론

2-1 Transformer 구조와 에너지 효율성 과제

Transformer는 Attention 메커니즘을 중심으로 설계된 딥러닝 모델로,

특히 자연어 처리 분야에서 획기적인 성능을 보여주며 기존 RNN 및

CNN 기반 모델을 빠르게 대체하였다 [1]. 이후 Vision

Transformer(ViT), Swin Transformer와 같은 확장 모델이 등장하면서

영상 처리와 다중 모달 학습 등 다양한 영역으로 적용 범위를 넓혀왔다.

Transformer의 핵심은 병렬 처리가 가능한 Self-Attention 구조이며, 이

는 Sequence 전반의의존 관계를효율적으로 학습하는데 효과적이다. 하

지만 이러한 구조는 입력 길이에 따라 연산량이 제곱으로 증가하는 구조

적 한계를 지니며, 이는 실제 배포 시 에너지 소모 및 지연 시간 증가로

이어진다.

특히, 수억 개이상의파라미터를 갖는 대규모 사전학습 모델은 GPU 자

원을 과도하게 사용하며, 엣지 디바이스나 배터리 기반 환경에서는 실용

성이떨어지는문제가 있다. 예를들어, GPT-3는단일질의응답에 수십~

수백Wh의 에너지를 소모할 수 있으며, 이는 대규모 사용자 기반 서비스

에큰 비용 부담을 초래한다. 따라서 Transformer 기반 모델의에너지효

율성 증진은 연구 커뮤니티와 산업계에서 중요한 과제로 부상하고 있다.

최근에는연산최적화와 구조경량화를중심으로다양한 접근이제안되고

있으며, 이는 환경적 지속가능성과 경제성 측면에서도 핵심적인 기술 개

발 방향으로 간주된다.

그림 1. Transformer 구조
2-2 에너지 효율적 Transformer 최적화 기술 관련 연구

Transformer 모델의 높은 연산 비용과 메모리 요구는 저전력 환경이나

실시간 응용에서 실용적인 제약 요인으로 작용해 왔으며, 이를 해결하기

위한 다양한 최적화 연구가 활발히 이루어지고 있다. 한 연구에서는

Transformer의 다중 어텐션 구조에 주목하여, 모든 어텐션 헤드가 항상

동일한중요도를가지지 않는다는점을실험적으로보였다 [2]. 실험결과,



중요도가 낮은 일부 헤드를 제거해도 모델 성능 저하가거의발생하지않

았으며, 이를 통해 연산량을 효과적으로 줄이고 에너지 소비를 절감할 수

있는 가능성을 제시하였다. 이러한 접근은 모델 경량화뿐 아니라 해석 가

능성 개선에도 기여할 수 있다. 또 다른 연구에서는 Transformer를 하드

웨어에서효율적으로 구현하기위한 구조 변환기법을제안하였다 [3]. 해

당 연구에서는 모델의 행렬 연산을 Block-Circulant 형태로 구조화하고,

이를 FPGA 환경에서 최적화함으로써 모델의 파라미터 수를 최대 16배까

지 줄였다. Block-Circulant 행렬의 순환적 특성을 활용하여 연산 효율을

극대화하였으며, 실험을 통해 기존 GPU 대비 약 8배, CPU 대비 27배 이

상의 에너지 효율 향상 효과가 확인되었다. 이는 Transformer 기반 모델

을 엣지 디바이스에서도 실용적으로 운영할 수 있게 만드는 중요한 기반

이 된다. Transformer의 추론 단계를 최적화하려는 시도도 이루어졌다.

한 연구에서는 시계열 분류 문제를 대상으로 구조적 프루닝과 정량화 기

법을 병행적용함으로써, 연산량을 줄이면서도 정확도를 유지하는 방법을

제안하였다 [4]. 정량화는 부동소수점 연산을 정수 기반 연산으로 치환하

여연산속도를향상시키고전력소비를줄였으며, L1 기반프루닝은중요

도가 낮은 연결을 제거해 모델 구조를 간결화하였다. 실험 결과, 추론 속

도는 60% 이상 향상되었고 에너지 소비는 약 30% 감소하였다.

Self-Attention 구조의 연산 효율성을 개선하기 위한 연구는 크게 두 가

지 방향으로전개되었다. 하나는 스파이킹 뉴럴 네트워크(Spiking Neural

Network, SNN)의 이벤트기반 연산 구조를 Transformer에 적용하여 연

산 에너지를대폭절감하는 접근이며, 다른 하나는 Self-Attention의 연산

복잡도를 줄이기 위한 Sparse Attention 구조 설계이다. 전자의 경우, 곱

셈 중심의 연산을 마스크 기반 덧셈 연산으로 대체하거나 스파이크 이벤

트기반계산흐름을도입하여기존대비최대 87배에달하는연산에너지

절감을 보고하였다 [5]. 후자의 경우, Self-Attention을 Quadratic에서

Linear 혹은 Sublinear 복잡도로 근사하는 다양한 구조가 제안되었으며,

이를 Edge-Optimized Transformer에 통합함으로써 Sequence 길이가 긴

입력에서도 전력소모와처리속도 모두를 효율적으로개선하였다 [6]. 이

러한 방법들은 공통적으로 입력 데이터의 특성과 중요도에 따라 연산을

선택적으로 수행하는 구조를 도입하여, 모바일 디바이스, 자율주행 센서,

IoT 환경 등에서 에너지 효율적 추론을 가능하게 한다. 또 다른 연구에서

는 Transformer 최적화를위한알고리즘적기법과 하드웨어설계를통합

적으로 고려하였다 [6]. 이 연구에서는 Quantization-Aware

Training(QAT), Structured Pruning, Dynamic Sparsity 등과 같은기법

이 실제 칩 설계에서 어떻게 활용될 수 있는지를 분석하고, 메모리 접근

최소화, 병렬 연산 블록 구성, 연산 스케줄링 등 시스템 수준에서의 구현

전략을 함께 제시하였다. 이를 통해 Transformer 모델을 FPGA나 ASIC

환경에 효과적으로 배치할 수 있는 설계 기준을 제공하였다. 마지막으로,

동적 추론기법을통해상황에따라연산경로를조정하고, 불필요한 연산

을 실시간으로생략하는접근도제안되었다 [7]. 이 방식은 입력 난이도나

중요도에 따라 활성화 블록을 선택적으로 조정하며, 평균 연산량과 전력

소비를 대폭 줄이는 동시에 정확도를 유지하는 것이 특징이다.

Sparsity-Aware Accelerator를 활용하여 데이터 재사용을 극대화하고,

메모리대역폭과 계산자원을함께절약함으로써 에너지효율을극대화하

였다.

Ⅲ. 결론

본 논문은 Transformer 모델의 에너지 효율성을 향상시키기 위한 최적

화 기술들을 구조적, 알고리즘적, 하드웨어적 측면에서 고찰하였다.

Self-Attention 연산의 복잡도를 줄이는 구조 개선, 파라미터 수 축소를

위한 프루닝과 정량화, 스파이킹 기반의 이벤트 중심 연산, 그리고 입력

중요도에따른동적추론기법등은공통적으로성능저하없이연산자원

과전력소비를절감하는데효과적임을보였다. 이러한기술들은특히엣

지 디바이스, 모바일 환경, IoT 시스템 등 에너지 제약이 큰 응용 분야에

서 Transformer 모델의 실용성을 높이는 데 중요한 역할을 한다. 더불어

하드웨어-소프트웨어 통합 최적화를 통해 실제 시스템 수준에서의 효율

적인 구현 가능성도 함께 제시되고 있다. 향후에는 다양한 기법들의 결합

효과에 대한 체계적 분석과, 에너지 소비에 따라 연산을 적응적으로 조절

할 수 있는 모델 설계가 주요 연구 과제로 부상할 것으로 기대된다.

Transformer의 에너지 효율성 개선은 지속 가능한 고성능 AI 시스템 구

현을 위한 핵심 기술로, 앞으로도 활발한 연구와 기술 발전이 요구된다.
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