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요 약  

 
본 논문은 기존 이미지 복원을 위한 시맨틱 통신에서 발생하는 한계점을 완화하기 위하여 비-시맨틱 통신과 결합한 통신 

시스템을 제안한다. 시맨틱 통신에서는 인공지능 (Artificial Intelligence, AI) 기반의 송신자와 수신자가 이미지 전송 시 

시맨틱 신호로 인코딩, 전송 후 원본 이미지로 재생성하는 구조를 가진다. 이에 사용되는 AI 모델은 여러 개의 이미지로 

시맨틱 신호 변환, 복원을 학습하기 때문에 특정 이미지에 대해 완벽한 복원을 하지 못하는 근본적인 한계점이 있으며, 

이를 추가적인 비-시맨틱 정보를 전송함으로써 복원하는 알고리즘을 제안한다. 

 

 

Ⅰ. 서 론  

시맨틱 통신은 전송 데이터가 가진 의미 혹은 대표할 

수 있는 정보를 전송함으로써 의도된 task 를 잘 

수행하는 것을 목표로 한다.[1] 이는 AI 의 발전과 함께 

송, 수신자를 AI 로 구현함으로써 데이터로부터 의미 

추출, 채널 신호로 변환까지의 일련의 과정을 수행할 수 

있다. 그러나, 다량의 이미지로 이를 학습하기 때문에, 

송,수신자는 이미지들의 분포 특성을 반영하여, 개별 

이미지에 대한 특징들을 구현하는데에 한계점이 

존재한다.[2] 본 논문에서는 시맨틱 신호로 추출되지 

않은 정보를 구성하여 추가 전송하며, 수직적 공간에 

투영하는 수학적 기법을 통해 원본 데이터로 복원할 수 

있는 하이브리드 시맨틱 통신 방법 (HSC, Hybrid 

Semantic Communication) 을 제안한다. 

Ⅱ. 본론  

가. 시스템 구조 

시맨틱 통신을 구성하는 송신자와 수신자는 AI 함수로 

정의된다. 송신자는 인코더 모델을 가지고 있다. X 는 

LxL 크기의 이미지이며, 인코딩 함수 f 를 통과하여 

시맨틱 정보를 담고 있는 k 개 채널 심볼로 구성되어 

있는 시맨틱 신호로 변환된다. 이후 이는 정량화 과정을 

통해 전송 파워를 만족하는 신호 z 로 변환된다.  

수신자는 디코더 모델을 사용하여 수신한 신호를 

이미지로 복원한다. 이때 채널 노이즈에 영향을 받은 

왜곡 신호는 z’으로 표현한다. 수신자가 수행하는 디코딩 

함수는 f-1 이며, 결과적으로 LxL 크기의 이미지가 

복원된다. 송,수신자가 수행하는 인코딩, 디코딩 과정은 

다음과 같다. 

 z = f(X) , X’ = f-1(z’)           (1) 

나. 추가 통신을 통한 이미지 복원 

수신자는 복원한 이미지 X’를 가지며, 송신자는 원본 

이미지 X 에 대한 비시맨틱 정보를 추가로 전송한다. 

이에 수신자는 두 데이터를 종합하여 이미지 X*를 

구성한다. 이는 복원 이미지와 원본 이미지 크기를 

동일하게 유지하며, 복원 이미지보다 더 작은 픽셀 단위 

차이를 발생시킨다. 이는 MSE 함수를 활용하여 아래 

수식으로 측정되고, 본 논문에서 MSE 를 최소화하는 

것을 목표로 한다. 

MSE(X,X*) = 1/L2 ∥ X-X*∥2        (2) 

 수신단에서 구성하는 이미지는 생성 이미지와 추가 

수신한 데이터를 결합하기 위하여 수직 공간에 각 

데이터를 투영하는 방식을 사용한다. 이에 A 라는 

2 차원 행렬을 가정하면 A 의 열들의 선형 결합으로 

구성된 벡터 공간이 구성된다. 이 공간은 수직, 

보완적인 두 공간으로 나뉘며, 각각 열공간 (range 

space) 와 영공간 (null space) 로 나뉜다. 따라서, 

송신자에서 다음과 같이 원본 이미지를 분해할 수 있다. 

[3] 

X = A+AX + (I-A+A)X               (3) 

원본 이미지가 가지는 비시맨틱 정보는 A 행렬을 

이용한 선형변환으로 만들어진다고 정의하며, 

y=AX 으로 나타낸다. 이에 식 (3) 와 같은 열, 영공간 

분리 공식을 (Range-null decomposition) 활용하여 

수신자가 가지는 생성 이미지는 열공간에 투영하고, 

추가로 수신한 비시맨틱 정보는 영공간에 투영하여 

결합한다. 구성한 최종 이미지는 다음과 같이 나타난다.  

X* = A+y + (I-A+A)X                (4) 



 

 
그림 1. d 에 따른 열, 영공간 투영 이미지 및 복원 

이미지 

식 (3)와 (4)을 참고하여 식 (2) 의 픽셀 단위 

차이점을 유도하면 Tr((I- A+A)(X-X’)T(X-X’)) 와 같다. 

이를 최소화하는 투영 함수 및 비시맨틱 추출함수인 

A 는 원본 이미지와 복원 이미지의 차이로 만들어진 

행렬, (X-X’)T(X-X’)의 고유 벡터 (eigen vector) 로 

구성하였을 때와 같다. 즉, A 가 dxL 크기일 때, d 개의 

고유 벡터로 구성되며, 다음과 같이 구성하였을 때와 

같다. d 는 추가전송하는 비시맨틱 정보 y 의 크기를 

결정하며, d 가 커짐에 따라 통신량이 증가한다. 또한, 

원본 이미지 특정 고유 특징을 반영하여 MSE 는 

줄어들고 d=L 일 경우 MSE=0 으로 동일한 이미지로 

복원이 가능하게 된다. 

 

다. 실험 결과 

2 차원 이미지 데이터인 MNIST 를 사용하였고, 각 

이미지는 LxL = 28x28 크기이다. 인코더와 디코더는 

각각 4 개의 FC (fully-connected) 신경망 레이어로 

구성되어 있으며, 인코더에서 출력하는 신호는 k=128 

개의 채널 심볼로 이루어져 있다.  

그림 1 는 d 를 증가시킴에 따른 복원 이미지의 

결과를 보여준다. 추가 전송을 하지 않았을 시 시맨틱 

신호를 이용해 복원한 이미지는 원본 이미지와 

의미적으로 유사하나, 디테일 및 고유 특징은 복원하지 

못한다. 그러나, d 에 비례한 y 추가통신 후 식 (4)를 

통한 복원 이미지는 원본 이미지의 특징을 반영함을 

보인다. 

그림 2 는 채널 환경에 따른 최종 복원 이미지와 

원본 이미지의 차이인 MSE 를 나타낸다. 추가 전송을 

하지 않고 기존 시맨틱 통신에 의한 복원 이미지와의 

차이점은 ‘SC’로 나타낸다. 본 채널환경에서 y 는 JPEG 

압축 및 LDPC 코드, 16QAM 기법을 사용하여 채널 

심볼로 변환하여 전송한다. 시맨틱 인코더와 디코더가 

채널 노이즈가 있는 환경에서 학습된 경우는 ‘noise 

robust’ 라고 일컫는다. 이를 신호 대 잡음비 (SNR) 에 

대해 실험하였을 때, 제안하는 HSC 기법은 SC 에 비해 

MSE 가 작음을 확인할 수 있다. SC 는 noise robust 의 

경우, 인코더와 디코더의 이미지 복원 성능이 모든 채널 

환경에서 최적화되도록 학습되기 때문에, SNR 이 높은 

채널 환경에서 성능이 떨어짐을 알 수 있다. 반면, 

HSC 는 채널 환경이 우수할수록 비시맨틱 정보의 추가 

통신을 통해 MSE 가 개선된다. 

 

 

 

 

 

그림 2. 채널 환경에 따른 MSE 차이점 

Ⅲ. 결론  

본 논문에서는 시맨틱 통신의 한계점을 극복하고, 

통신량에 대해 원본 이미지와 복원 이미지의 차이를 

감소시키기 위하여 비시맨틱 정보를 추가 전송하는 

하이브리드 시맨틱 통신 방식, HSC 를 제안한다. 이는 

d 로 통신량을 조절할 수 있으며, 이에 대해 복원 

성능이 높아짐을 보였다. 또한, 다양한 채널 환경에서 

실험 시, 복원 이미지와 원본 이미지의 차이가 작은 

경향을 보인다. 
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