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요 약

최근 대규모 언어 모델(LLM)이 로봇 시스템에 통합되면서 로봇이 자연어를 수신하고 해석할 수 있게 하여 로봇 작업 과정이 향상되었다. 그러나
LLM을 이용한로봇작업과정에서지연시간과 전력소비를 증가시키는상당한메모리와계산요구를필요로한다. 반면, 온디바이스언어모델(SLM)
은 종종 정확도가감소하고 의미적 용량이 제한된다. 본 논문에서는 U-HLM(불확실성-인식 기회 기반 하이브리드 언어 모델)을 통해, LLM의 문제를
완화하는 동시에 SLM의 한계를 해결한다. 실제 무선 네트워크 환경에서 베이스라인 방법과 비교하여 성능을 평가하기 위해 U-HLM을 실시간 무선
Wi-Fi 테스트베드에 배포하고, 불확실성계산을 선택적으로 건너뛰어 U-HLM의 지연시간을더욱 최소화하는 방법을제안한다. U-HLM을 사용하여
높은 정확도와 높은 처리량 생성이 가능하다는 것을 실험을 통해 확인하였다.

Ⅰ. 서 론

최근복잡한로봇작업을수행에대규모언어모델(LLM)을 활용한로봇

작업 계획에 관한 연구가 진행되고 있다. [1] 하지만 이러한 발전에도 불

구하고, 원격 추론과통신지연 등의 제한사항으로 실시간 요구사항을만

족하기 어렵다. [2] 이를 해결하기 위해, 온디바이스 언어 모델(SLM)과

원격 LLM을 결합한 불확실성-인식 기회 기반 하이브리드 언어 모델

(U-HLM)을 제안한다. [3]

선행 연구는 시물레이션된 무선 조건을 사용하여 U-HLM을 평가하고

모든토큰에 대해불확실성을계산하여불확실성 추정자체의오버헤드를

무시했다.[3] 이는 실제 무선 Wi-Fi 환경의 가변성을 포착하고 불확실성

계산의 오버헤드를 고려하는데 한계가 있고, 로봇 작업 실행을 위한 계획

파이프라인에 U-HLM을 통합하는 방법을 보여주지 않는다.

본 연구에서는 실시간Wi-Fi 테스트베드에서 U-HLM을 배포하여최적

불확실성 임계값을 도출하고 지연 요소를세분화해벤치마킹하고, 조건부

불확실성평가를도입해추가지연을줄이며, 다양한실제로봇작업 시나

리오에서 U-HLM을 통합·검증한다. 실험 결과, 네트워크 상태에 따라

U-HLM은 빠른 실행 속도와 더 높은 정확도를 얻었으며, 선택적 불확실

성 계산으로 불필요한오버헤드를 최소화하여 LLM을 사용하면서나타나

는 지연과 신뢰성 문제를 극복하는 실용적인 대안임을 확인하였다.

Ⅱ. 시스템 모델

불확실성-인식기회 기반 하이브리드 언어 모델(U-HLM)은 자원이 제

한된 로컬 디바이스에 배포된 소형 언어 모델(SLM)과 고성능 서버에 존

재하는대형 언어모델(LLM)의두가지요소로구성된다.[3] U-HLM의핵

심 아이디어는 로컬 디바이스에 배포된 SLM이 먼저 초안 토큰을 제안하

고,자체 불확실성을 계산하는 것이다. 불확실성은 모델이 자체 출력에 대

해 평가한 신뢰도이다. 불확실성이 미리 정의된 임계값을 초과하면, 토큰

은 수락 또는 거부를 위해 LLM으로 전송된다.

그림 1. 불확실성-인식 기회 기반 하이브리드 언어 모델 구조

Ⅲ. 베이지안 기반 선택적 불확실성 계산

이절에서는토큰별 불확실성 추정의 과도한계산 오버헤드를줄이기 위

해 베이지안 결정 이론에 기반한 선택적 불확실성 계산 기법을 제안한다.

기존 방식은 온도 섭동(temperature perturbation)마다 Vocabulary size

V만큼의소프트맥스연산을 K번수행하여, 토큰당 O(KV)의 막대한연산

비용을 야기한다. 이를 개선하기 위해 먼저 순차적 소프트맥스 호출로 각

각의실행지연시간을분리측정함으로써, 병렬처리시발생하는메모리

대역폭경쟁과스케줄링 오버헤드를배제한명확한기준선을 확보한다.[4]

다음으로, 과거 k회의 불확실성추정치       , 해당 시점의최상
위 토큰 확률 max    max , 그리고 토큰 인코딩 ϕ를 하나의 고정 길이
벡터 ​로 결합한다. 이 벡터를 입력으로 하는 로지스틱 회귀 분류기를
교차 엔트로피 손실로 학습하여,   ≈   를 예측하도록
함으로써 실제 불확실성이 임계값 를 초과할 확률을 사전에 평가할 수
있다. 마지막으로, 불확실성 계산에 드는 시간 비용 와, 계산을 건너뛰
었다가 잘못된 결정을 복구하는 데 소요되는 비용 ​를 정의한다. 베이
지안 최소 위험 규칙에 따라 임계값   

 를도출하고, 분류기예측값



 이 보다 작을 때만 불확실성 계산을 건너뛰도록 함으로써, 불필요
한 연산을 크게 줄이면서도 정확도 손실을 최소화한다.[5]

IV. 실험 결과

1) 지연 시간 감소를 위한 선택적 불확실성 계산 스킵

2500개의 토큰 생성 단계에서 분류기는 9.1%(227개)만큼 불확실성 계산

을 건너뛰도록 선택했으며, 이 중 오류 스킵은 8.8%로 전체 오류율은 1%

미만이었다. 이를 통해 전체 불확실성 평가의 10% 가량을 제거하면서도

성능 저하를 거의 발생시키지 않음을 확인했다.

2) 유틸리티 최대화를 통한 임계값 선택

0부터 1까지 0.05 단위로 임계값을 조정하며 100개의 샘플을 테스트한

결과, 유틸리티 함수(신뢰도 지표 가중합 및 처리량 패널티) 최대화 지점

은 =0.15로 나타났다. 이 값에서 F1 점수가 최고치를 기록하면서도 토
큰 처리량은 최대의 80.9%를유지하여, 로봇 작업 계획에 적합한최적 임

계값임을 확인했다.

그림 2. Threshold senstibity, precision, recall, F1 vs 토큰처리량(좌)

네가지 방법의 토큰당 지연 시간(강한 vs 약한) (우)

3) 다양한 네트워크 조건에서의 기준선 간 비교 지연 시간 분석

두가지 실내 Wi-Fi 시나리오(강한/약한 커버리지)에서 SLM, Rand-HL

M, HLM과 비교한 결과, =0.15인 U-HLM은 열악 조건에서도 토큰당
지연 시간이 SLM 대비 12%, Rand-HLM 대비 2.6%만 증가했으나 F1은

각각 0.663에서 0.929, 0.703에서 0.929로 30% 이상 향상되었다. HLM 대

비 지연은 19% 줄면서도 F1 손실은 2%미만에 그쳐, 통신 품질 악화에도

일관되게 낮은 지연과 높은 신뢰도를 유지함을 보였다. 아래의 식은

Rijsbergen, C. J. V. Information Retrieval에서 발췌하였다.       (1)

  ∙    × 
(2)

4) 실제 로봇 시스템 통합 평가

Doosan A0912s 로봇과 커피 서비스 시나리오에서, 쉬움/중간/어려움세

난이도 모두에서 U-HLM은 전송률을 50-66% 절감하고 추론 시간을

10-20% 단축했다. 계획 성공률은 중간 난이도에서 0.70에서 0.65로 소폭

하락했으나, 쉬움과 어려움 수준에서는 HLM과 동등하게 유지되었다. 이

를 통해, U-HLM은 실제 로봇 환경에서도 네트워크 트래픽과 지연을 크

게 줄이면서, 높은 작업계획 신뢰성과 안전성을 보장하는 실용적 대안임

을 입증한다.

Ⅲ. 결론

본논문에서는계산 오버헤드를더욱 줄이기위한 선택적 불확실성 계산

스킵을 제안하고, 실제 무선 네트워크에서 기준 방법에 대한 U-HLM의

상대적성능을검증하며, 로봇공학에서 U-HLM의 실제 구현을보여주었

다. 본 실험을 통해 이러한 선택적 스킵이 무시할 수 있는 수준의 성공률

감소만으로종단간지연 시간과업링크트래픽을모두 절반으로줄인다는

것을확인했으며, 이는 로봇플랫폼에서 U-HLM의 실시간 구현가능성을

보여주고 적응형임계값 설정과더 넓은 작업 시나리오에대한후속 연구

를 촉진한다.
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