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Abstract
기존 Orthogonal Frequency Division Multiplexing(OFDM) 시스템에서 널리 사용되는 Least Squares(LS) 채널 추정 기반 수신기는 파일럿 심볼에
의존하여 채널을 추정하지만, 실제 채널 상태나 잡음 간섭, 특히 Multiple Input Multiple Output(MIMO) 환경에서의 스트림 간 간섭까지 반영하지
못하는 한계가 있다. 본 연구에서는 이러한 문제를해결하기위해 Convolutional Neural Network(CNN)과 Long Short-Term Memory(LSTM)을 결합
한 딥러닝 기반 Neural Receiver를 설계하고, NVIDIA Sionna 프레임워크를 통해 그 성능을 검증한다. 시뮬레이션을 통해, 딥러닝 기반 Neural
Receiver가 LS 채널 추정 방안 대비 낮은 Signal-to-Noise_ratio(SNR) 환경에서도 향상된 Bit Error Rate(BER) 성능을 가짐을 보인다.

Ⅰ. Introduction

6G 시대에서는 높은 신뢰성과 빠른 통신을 실현하기 위해, 수신기 설계

와채널추정등통신시스템에서인공지능기반접근방식이활발히연구

되고 있다[1]. 반면, 기존 시스템 구조는 복잡한 채널 환경에서 정확도가

떨어진다는 한계를 지닌다. 대표적으로 Orthogonal Frequency Division

Multiplexing(OFDM) 시스템에서 널리 사용되는 Least Squares(LS) 기

반 채널 추정 방식은 주기적으로 전송하는 파일럿 심볼을 단순히 나누는

방식을 통해 채널을 추정한다. 이 방식은 구현이 간단하다는 장점이 있으

나, 채널의 구조적 특성을 고려하지 않기 때문에 노이즈가 추정값에 직접

더해지고, 이에 따라 낮은 Signal-to-Noise-Ratio(SNR) 영역에서 채널

추정 성능이 크게 떨어지게 된다. 그림 1은 Perfect CSI (Channel State

Information)과 LS 채널 추정의 성능 차이를 보여준다[2].

그림 1. BER Performance Comparison of LS estimation and Perfect CSI Receivers

또한 Multiple Input Multiple Output(MIMO) 4x4 환경에서는 송신스트

림 간 간섭이발생하며, 기존 LS 채널 추정방식은 이를충분히 반영하지

못한다. 그림 2는 스트림 간 간섭의 심각성을 보여주며, Bit Error

Rate(BER) 성능 역시 Perfect CSI 대비 큰 차이를 보인다. 이로 인해 각

수신기에서 정확한 데이터 복원이 어려운 문제가 발생한다[3].

본 논문에서는 이러한 LS 채널 추정 기반 수신기의 한계를 극복하기 위

해, 업링크 및 기지국 간 통신 시나리오를 가정한 OFDM 시스템에서

Long Short-Term Memory(LSTM)과 Convolutional Neural

Network(CNN)을 결합한 딥러닝 기반 Neural Receiver를 설계한다. 본

수신기는 채널 상태와 노이즈를 보다 정밀하게 반영하며, 스트림 간 간섭

을 분리하는 구조로 설계되어 향후 MIMO 환경으로의 확장도 가능하다.

본 논문에서 시뮬레이션은 NVIDIA에서 제공하는 TensorFlow 기반 오

픈 소스 라이브러리인 Sionna를 활용하여 수행하였다. Sionna는 무선 및

광통신 시스템의 물리 계층과 다양한 채널 모델, Ray Tracing 기반 전파

모델링을 지원하는 통합 시뮬레이션 도구이다. 본 논문에서는 Sionna를

통해 OFDM 시스템의 전체 물리 계층을 구성하고, LS 채널 추정기 및

Neural Receiver를 구현하였다. 이를 바탕으로 기존 LS 채널 추정 방식

대비 BER 성능을 비교·분석하였다.

그림 2 BER performance comparison between LS estimation and Perfect CSI receivers (left), and

interference power histogram for Stream 0 (right).

Ⅱ. 딥러닝 기반 Neural Receivers

본 논문에서는 CNN과 LSTM을 결합한 두 가지 Neural Receiver 모델

을 설계하고 구현하였다. CNN은 시간 및 주파수 축에서 발생하는 간섭,

페이딩, 노이즈의분포를효과적으로학습할수있어채널상태및스트림

파악에 적합하며, LSTM은 시계열 상의 연속성을 활용하여심볼 간 상관

성과 노이즈 패턴을 학습함으로써, 노이즈 및 간섭 제거에 유리하다.

A. CNN-LSTM

그림 3. Overall architecture of the proposed CNN-LSTM Neural Receiver (top) and

detailed structure of the CNN (bottom)

CNN-LSTM 모델은그림 3의 상단 구조를 따른다. CNN은 수신 신호로

부터 채널 상태 및 심볼의 스트림 관련 정보를 추출하며, LSTM은 이를

이용해 수신 신호 내 노이즈와 간섭을 제거하고 soft Log-Likelihood

Ratio(LLR)을 추정한다. CNN은 그림 3 하단 구조에 따라 Conv2D와

Layer Normalization으로 구성되며, Conv2D는 채널흐름에대한 심볼 특

징을 추출하고, Layer Normalization은 공간및 채널 차원에서 출력을 정

규화하여 학습 안정성을 높인다. LSTM은 Bidirectional 구조로 구현되어

앞뒤 시간 흐름을 모두 반영함으로써 시간-주파수 도메인상의 연관성을

효과적으로 학습할 수 있다.

B. LSTM-CNN

LSTM-CNN 모델은 그림 4의 상단 구조를 따른다. CNN-LSTM과 유사

하게 LSTM은 노이즈 및 간섭을 제거하고, CNN은 채널 상태 및 스트림



관련 정보를 추출하지만, 본 구조에서는 LSTM이 먼저 soft LLR을 추정

하고, 이후 CNN이 이를 보정하는 방식으로 처리 순서에 차이가 있다.

LSTM은 이전 모델과 동일하게 Bidirectional 구조로 구성되었으나, 채널

정보 없이 LLR을 추정해야 하므로 입력 전에각각 dense layer로 구성된

두 개의 encoder를 통해 주요 정보를 정제한다. CNN은 보정 기능을 수행

하기 위해 NVIDIA Sionna의 예시 모델을 기반으로 그림 4의 중간 구조

처럼 설계되었으며, 내부에 Residual Block을 포함한다[4]. 해당 Block은

그림 4 하단 구조를 따르며, 입력 정보를 유지하면서 필요한 보정 정보를

추가적으로 학습하도록 설계되었다. 최종적으로 CNN은 채널 상태를 반

영하여 각 스트림별 LLR을 보정한다.

그림 4. Overall architecture of the proposed LSTM-CNN Neural Receiver (top), detailed

structure of the CNN (middle), and internal configuration of the residual block (bottom).

III. Simulation Results

A. 시뮬레이션 환경

Delay spread 100ns SNR Range -3dB ~ 5dB

Number of UT, BS 1
Number of OFDM

symbols
14

Carrier frequency 2.6 GHz FFT size 76
Coderate 0.5 CP length 6

UT speed 10m/s Channel Model
3GPP

CDL-C

Direction Uplink 채널 적용 방식
Frequency

domain

서브캐리어간격 30 kHz 변조 방식 및 채널 코딩
QPSK,

LDPC

표 1. Simulation Parameters

시뮬레이션은 송신 안테나 1개, 수신 안테나 2개로 구성된 1×2 환경에서

진행되었으며, 모든 실험은 NVIDIA의 Sionna 프레임워크를기반으로구

현되었다. 본 연구에서는 Sionna에서 제공하는 Quadrature Phase Shift

Keying(QPSK) 변복조, Low Density Parity Check(LDPC) 채널 코딩,

OFDM 리소스 그리드 및 심볼 매핑/디매핑 등을 활용하여 송수신 물리

계층 전반을 구성하였고, 비트 생성부터 BER 측정까지 Sionna의 함수들

을이용해시뮬레이션전과정을통합적으로구현하였다. 채널 모델은 3rd

Generation Partnership Project(3GPP) Clustered Delay Line(CDL)-C를

적용하여가우시안 잡음과다중경로페이딩이반영된 실제환경을구성하

였으며, Neural Receiver는 이 구조에 맞게 설계되었다. 주요 파라미터는

표 1에 정리하였다.

B. 시뮬레이션 결과

그림 5는 CNN-LSTM 및 LSTM-CNN 모델의 BER 성능을 Perfect

CSI 및 기존 LS 채널 추정 기반수신기와 비교한 결과를 나타낸다. 두 모

델 모두 전 SNR 범위에서 LS 채널 추정 기반 수신기보다 우수한 BER

성능을 보였으며, 특히 LS 채널 추정 기반 수신기가   dB 이
하에서 BER이  수준을 벗어나지 못한 반면, 딥러닝 기반 모델들은
1.6 dB부터 사실상 BER이 0에 수렴하는 성능을 나타낸다. 또한 두 모델

의 BER 곡선은 Perfect CSI 수신기와유사한 경향을보이며, 기존 LS 채

널 추정기의 한계를 효과적으로 극복한 것을 볼 수 있다.

일부 SNR 구간에서 BER이 일시적으로 상승하는 현상이 관찰되었으나,

이는 시뮬레이션과정에서 해당구간에무작위로생성된 비트가상대적으

로 어렵게 구성된 결과로 보이며, 이러한 편차는 모델의 구조적 문제라기

보다는 반복 시뮬레이션 특성상 발생할 수 있는 확률적 오차로 판단된다.

종합적으로, 딥러닝 기반 Neural Receiver는 채널 상태를 보다 정확히 반

영하고 노이즈를효과적으로 제거함으로써, 기존 LS 채널 추정 기반수신

기대비 우수한성능을 보였으며, Perfect CSI 수신기에근접한 비트복원

능력을 달성하였다.

그림 5. BER performance comparison of LS Estimation, Perfect CSI, and proposed Neural

Receivers under a 1×2 scenario.

IV. Conclusion

본 논문에서는 1×2 환경에서 딥러닝 기반 Neural Receiver가 기존 LS

채널추정방식에비해채널상태를더정확히반영하고, 노이즈를효과적

으로 제거하여 정확한 비트 복원이 가능한지를 BER 성능을통해비교·분

석하였다. 실험결과, CNN-LSTM과 LSTM-CNN 모두 LS 채널추정기

반 수신기에 비해 채널 상태를 보다 정밀하게 반영하고 노이즈를 효과적

으로 제거함으로써, 전반적인 BER 성능 향상을 달성하였으며 Perfect

CSI 수신기와 유사한 수준의 성능을 보였다. 또한, 향후 MIMO 환경에서

의 시뮬레이션을 염두에 두고 스트림 분리 기능을 포함한 구조로 설계하

였기때문에, 다양한다중안테나환경으로의확장이가능하다. 다만, 모델

의 복잡도와 연산량 증가로 인해 상대적으로 높은 지연시간이 발생하는

점은 향후 관련 추가 연구가 필요하다.
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