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요 약

본 논문은 뇌파를 기반으로 한 운동 심상 분류 기술의 발전 과정을 체계적으로 정리한 것이다. EEG는 시간 해상도가 높고 센서 구조가
간단하여다양한뇌-컴퓨터인터페이스응용에적합한신호로평가된다. 하지만 EEG는 비선형성및 피험자간분포차이로인해분석과분류에어려움
이 존재한다. 초기에는 CSP와 같은 전통적인 특징 추출 기법이 주로 활용되었으나 시계열 정보를 반영하지 못하고 피험자 간 일반화 성능이 낮다는
한계가 있었다. 이러한 문제를 보완하기 위해 다양한 주파수 대역을 고려하는 Filter Bank CSP, 비선형 구조를 반영하는 Riemannian Geometry 기반
모델이 제안되었다. 이후 EEGNet, CNN-LSTM과 같은 딥러닝모델을 통해 시공간 정보를 자동으로 학습하는 접근이가능해졌으며 분류정확도 향상
에 기여했다. 그러나 피험자 간 신호 특성의 차이로 인해 여전히 cross-subject 상황에서는 성능 저하가 발생하는 문제가 남아있으며 이를 해결하기
위해 Domain-Adversarial Neural Network와 같은 도메인 적응 기반 모델이 도입되었다. 더 나아가 CNN-VAE, DMTL,GCN/GAT 등 복잡한 신경
구조나 연결성을 반영한 표현 학습 기반 모델이 개발되었으며 소수의 학습 샘플만으로도 빠른 적용을 가능하게 하는 Prototypical Network, MAML
등의 few-shot 및 meta-learning 기반 개인화 모델이 제안되고 있다. 본 논문은 각 모델이 직면한 기술적 한계와 그에 대한 대응 방식을 중심으로
MI 기반 EEG 분류 기술 발전 흐름을 정리하였다.

Ⅰ. 서 론

뇌파(EEG, Electroencephalography)는 뇌의전기적 활동을 시간에 따라

연속적으로 측정할 수 있는 생체신호로 최근에는 건식 전극과 같은 간편

한 센서를 통해 비교적 쉽게 수집할 수 있어 다양한 분야에서 활용되고

있다.[1] EEG는 외부 자극, 인지 활동, 운동 의도 등 다양한 뇌 상태를 반

영할 수 있지만신호의 복잡성과 잡음에대한민감도로인해분석에 어려

움이 존재한다. 특히 피험자마다 집중력, 반응 양상, 전도 특성이 달라 동

일한 자극에도 뇌파의 분포가 다르게 측정되는 경향이 있어 EEG 분석에

는 높은 정밀도와 적응력이 요구되고 있다.

최근에는 EEG을 활용한 뇌-컴퓨터 인터페이스(BCI) 기술이 활발히 연

구되고 있으며 그중 운동심상(Motor Imagery, MI)은 실제움직임 없이

특정 동작을 상상한다.[2] MI 기반 BCI의 핵심은 유의미한 뇌파 패턴을

효과적으로 추출하고 이를 안정적으로 분류하는 데에 있다.

초기에는 전문가가 설정한 주파수 대역이나 공간 정보를 기반으로 수작

업특징추출방식이주로사용되었으니표현력과시공간정보통합, 일반

화 성능, 개인 적응력 향상을 위한 다양한 신경망 기반의 자동화된 접근

방식이 제안되고 있다. 본 논문에서는 EEG 기반 MI 분류 모델의 발전과

정을 대표적인 구조별로 정리하고 각 모델이 해결하고자 한 기술적 한계

와 향후 연구 방향을 고찰하고자 한다.

Ⅱ. 본론

2.1 CSP 기반 모델

EEG 기반 운동심상 분류초기에는 Common Spatial Pattern 즉 CSP가

널리사용되었다. CSP는두클래스간 분산 비율을 최대화하는공간 필터

를 학습함으로써 뇌파 신호의 공간적 패턴을 효과적으로 추출할 수 있다.

계산이 간단하고 직관적이며 낮은 연산 자원으로도 일정 수준 이상의 분

류 성능을 낼 수 있다는 점에서 실용성이 높았다.[3] 그러나 CSP는 시계

열구조를 반영하지 못하고피험자 간 신호 분포 차이에민감하다는 한계

가존재한다. 이를 보완하기위해 Filter Bank CSP가 제안되었다. 이는 다

양한 주파수대역으로신호를 분해하고 각대역에 CSP를 적용하여더 풍

부하고 정교한 특징을 추출할 수 있도록 하였다.[4]

2.2 Riemannian Geometry 기반 모델

Filter Bank CSP는 주파수 정보를 확장하였으나 여전히 선형 공간에서

의처리를기반으로 하기때문에 EEG 신호의 비선형구조를충분히반영

하지 못했다. 이에 EEG 신호의 공분산 행렬을 대칭 양의 정부호 즉

Symmetric Positive Definite(SPD) 행렬로 해석하고 이를 리만 기하학

기반의 방법으로 분석하는 접근이 제안되었다. 이 방법은 SPD 행렬 간의

리만 거리 계산이나 Tangent Space 투영을 통해 분류에 활용할 수 있는

특징을 도출한다.[5] Tangent Space 기반 기법은 비선형 구조를 선형 모

델에서도 활용할수 있도록변환해주며 피험자간 신호 분포 차이가 존재

하는 상황에서도 비교적 안정적인 성능을 보인다.[6] 이후 Riemannian

Alignment(RA)를 통해 공분산 표현을 기준 피험자에 정렬함으로써 표현

공간을 통일하고 모델의 일반화 성능을 높이는 방식으로 확장되었다. [7]

다만 이러한 접근은 대부분 선형 분류기를 기반으로 하며 복잡한 분류



경계를학습하거나 시공간정보를통합적으로반영하는 데에는구조적한

계가 존재한다.

2.3 EEGNet

딥러닝 기술이 EEG 분석에 적용되면서 원시 신호로부터 특징을 자동으

로 학습하는 end-to-end 방식의 모델이 등장하였다. 이 중 EEGNet은 대

표적인 경량 모델로 Depthwise Separable Convolution 구조를 활용하여

시공간 정보를 분리해 처리하고 전체 파라미터 수를 줄여 실시간 응용에

도 활용할 수 있는 구조를 가진다.[8]

이 모델은 먼저 입력된 데이터에 공간 필터를 적용하여 EEG 채널 간공

간적 패턴을 추출하고 이후 시간 필터를 적용하여 시계열적 특징을 도출

한다.[8] 또한 Dropout과 Batch Normalization 등의 기법을 활용하여 과

적합을 방지한다. 이러한구조는 다양한 EEG 분류 과제에서 효율성과성

능 간의 균형을 바탕으로 baseline 모델로 널리 활용되고 있다.

그러나 EEGNet은 주로 단일 피험자의 데이터를 기반으로 구성되어 있

어 새로운피험자에 대한일반화 성능에는 한계가 있으며 장기 시계열정

보를 처리하는 데에도 구조적 제약이 따른다.

2.4 CNN-LSTM 구조

EEG는 시간 축을 따라 변화하는 시계열 데이터이기 때문에 이를 효과

적으로처리하기 위해 CNN과 LSTM을 결합한구조가제안되었다. CNN

은 EEG 채널간의공간적패턴을 학습하고 LSTM은시간 축에서순차적

의존성을 포착하여 시공간 정보를 통합적으로 반영할 수 있다.[9]

이러한 방식은반복적이거나장기적인패턴이포함된운동심상과제에

서 기존의 CNN 또는 RNN 같은 단독 구조보다 우수한 성능을 나타낸다.

그러나 모델의 복잡도가 증가할수록 연산 자원 요구량이 커져 데이터가

제한되었을 때 과적합이 발생한다.

2.5 DANN

딥러닝 기반 모델은 높은 표현력을 가지지만 피험자 간 뇌파 분포 차이

로 인해 cross-subject 환경에서는 성능이 크게 저하되는 문제가 있다. 이

를 해결하기 위해 Domain-Adversarial Neural Network 즉 DANN이 제

안되었다. DANN은 feature extractor와 분류기 외에 도메인 분류기를 추

가로 구성하고 feature extractor가 도메인 분류기를 구분하지 못하도록

학습하여 도메인 불변 특징을 학습을 유도한다.[10]

이러한 adversarial 학습 방식은 다양한 피험자의 데이터를 하나의 표현

공간으로 정렬하여 모델의 일반화 성능을 향상하는 데 효과적이다. 그러

나 학습 안정성이 낮고 추출된특징이 완전히도메인 독립적이지 않을수

있다.

2.6 CNN-VAE와 DMTL

EEG의 복잡한 특성을 효과적으로 표현하기 위해 CNN과 Variational

Autoencoder(VAE)를 결합한 모델이 제안되었다. CNN-VAE는 EEG 신

호의잠재표현을추출한후이를분류뿐만아니라신호재구성에도활용

함으로써 데이터의 구조적 특성에 대한 이해를 높혔다.[11]

한 편 DMTL(Dual/Multi-Task Learning)은 분로와 함께 재구성 또는

예측 등의보조과제를 병행함으로써 다중 태스크 학습을 통해 모델의일

반화 성능을 향상하는 것을 목표로 한다. 이러한 접근은 라벨이 부족하거

나 노이즈가 많은 환경에서도 비교적 안정적인 성능을 보이지 태스크 간

중요도조정이나손실함수의 구성 방식에따라성능 변화가 크게 나타날

수 있다.

2.7 GCN과 GAT 기반 모델

EEG 신호는 채널 간 물리적 위치나 기능적 연결성을 기반으로 상호작

용하므로 이러한 특성을 반영한 Graph Neural Network (GNN) 기반의

접근이 제안되었다. Graph Convolution Network(GCN)은 각 EEG 채널

을노드로 설정하고 인접 채널 간의 관계를 엣지로 정의함으로써 신호 간

상호작용을 그래프 형태로 모델링한다.[13]

Graph Attention Network(GAT)는 attention 매커니즘을 추가하여 채

널 간 중요도의 차이를 반영했다. 이를 통해 중요한 연결에 더 높은 가중

치를 부여한다. 이와 같은 방식은 기능적 연결성 분석이나 해석 가능성이

요구되는 상황에서 효과적으로 사용될 수 있다. 다만 그래프 구조의 정의

기준이 명확하지 않고 계산 자원 소모가 크다.

2.8 Prototypical Network와 MAML

BCI 응용 환경에서는 피험자 간 차이가 크고 개별 사용자로부터 충분한

데이터를 확보하기 어려운 경우가 많다. 이러한 문제를 해결하기 위해 최

근에는 meta-learning 및 few-shot learning 기반 모델이 제안되고 있다.

Prototypical Network는 각클래스의 중심값을학습한 후테스트샘플이

어느 클래스 중심과 가까운지를 기준으로 분류를 수행한다. 이는 소수의

샘플만으로 빠르게 적용할 수 있다.[15]

MAML(Model-Agnostic Meta-Learning)은 다양한 테스크에서 일반화

할수있는초기가중치를학습한후새로운피험자데이터에대해소량의

fine-tuning만으로 빠르게 성능을 향상할 수 있도록 설계된 구조이다. 이

와 같은 접근은 개인화와 일반화성능을 동시에고려할 수 있다는 점에서

실제 응용 가능성이 크다. 그러나 사전 학습 데이터의 품질이나 하이퍼파

라미터 설정에 따라 모델 성능이 크게 달라질 수 있다.[16]

Ⅲ. 결론

EEG 기반 운동 심상 분류 기술은 전통적인 수동특징기반모델에서 출

발해 딥러닝 중심의 자동화 구조로 변환되었고 이어서 도메인 적응, 표현

학습, attention 및 그래프 기반 구조, meta-learning 기반 개인화 전략까

지 점진적으로 진화했다. 각 기술은 이전 접근의 한계를 극복하고자 등장

하였으며 특히 최근에는 실용적인 BCI 시스템을 위해 경량화, 실시간성,

개인 맞춤형 적응력 확보라는 핵심 요소를 동시에 고려한다. 앞으로는 이

다양한기술들을통합한 하이브리드구조가실현되어높은 일반화와해석

가능성을 갖춘 차세대 BCI 시스템의 기반이 되기를 기대한다.
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