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Abstract 

 
This paper presents a real-time pipeline that synchronizes mmWave radar intermediate-frequency (IF) streams with 

3D skeletons from a stereo camera, using cascaded range, doppler, and angle of arrival (AoA) FFTs with constant false 

alarm rate (CFAR) filtering to reconstruct denoised 3D point clouds. Streaming over UDP ensures precise alignment of 

radar and vision data. The resulting multimodal dataset of paired frames enables end-to-end neural models for robust 

indoor occupancy detection and trajectory tracking. 

 

 

Ⅰ. Introduction 

In indoor environments, human detection and tracking 

are essential for applications such as smart homes, 

security surveillance, and elder care. Conventional 

object detection approaches primarily depend on visual 

sensors like cameras. While camera-based systems 

offer high-resolution visual information, they remain 

vulnerable to lighting variations, occlusions, and 

privacy concerns. To address these shortcomings, 

mmWave radar has gained traction due to its 

insensitivity to lighting and clothing variations and its 

ability to penetrate non-metallic barriers, thereby 

providing reliable detection. However, radar 

performance is limited by hardware specifications, and 

the resulting point clouds are extremely sparse, 

rendering fine-grained shape and pose estimation 

challenging. Recognizing these challenges, recent deep 

learning–based approaches have sought to extract 

richer semantic information from sparse radar returns. 

The mmMesh framework [1] employs VICON motion-

capture data as ground truth to train an SMPL-based 

model capable of reconstructing dynamic 3D human 

meshes from only a few dozen radar points per frame. 

In parallel, mmYodar [2] converts radar point clouds 

into pseudo-images and uses Azure Kinect–derived 

bounding-box labels to optimize a YOLOv3 network for 

accurate object detection. Building on these advances, 

we propose a framework that (1) fuses constant false 

alarm rate (CFAR)-filtered mmWave point clouds with 

3D skeleton data from a ZED 2i stereo camera, and (2) 

integrates these modalities within a deep learning 

model to substantially enhance human detection and 

tracking performance in indoor settings. 

Ⅱ. Method 

This paper focuses on the design and implementation 

of synchronized data collection and processing pipeline 

for indoor occupancy detection and tracking. As 

illustrated in Fig 1, our pipeline comprises three 

sequential stages—data collection, data processing, and 

dataset generation—that work in concert to produce 

time-aligned mmWave point clouds and 3D skeletons. 

In the first stage, raw sensor outputs are streamed into 

the PC; the second stage applies signal-processing 

routines to extract 3D points; and the final stage 

assembles point-and-skeleton data pairs for 

subsequent deep-learning training and evaluation. 

 
Fig 1. Overview of Data Pipeline 

 

A. Data Collection 

For real-time operation, a commercial frequency 

modulated continuous wave (FMCW) radar continuously 

emits chirped waveforms and mixes received signal 



with the transmitted signal to yield intermediate-

frequency (IF) samples. These IF data are packetized 

and streamed over a custom UDP protocol, ensuring 

minimal latency and packet loss. In parallel, a vision 

sensor captures synchronized video frames from which 

we extract 3D skeletons via its onboard SDK. By 

timestamping both the IF packets and skeleton outputs 

at acquisition, we guarantee precise temporal alignment 

between the radar returns and ground-truth poses. To 

ensure consistent sensor geometry throughout our 

experiments, both devices are rigidly co-mounted on a 

single frame. To illustrate this setup, Fig 2. shows the 

testbed of the integrated radar and vision sensor, with 

the subject positioned at a fixed distance and 

orientation relative to both sensors. 

 
Fig 2. Testbed of Integrated Radar-Vision System 

 

B. Data Processing 

Upon arrival, IF packets are digitally decoded and 

fed into a cascaded FFT pipeline. First, a range-FFT 

converts time-domain samples into range bins, 

followed by a doppler-FFT that produces a 2D range-

doppler map. We then apply a CFAR detector—but 

instead of discarding zero-doppler cells as clutter, we 

retain their amplitude information for ghost removal and 

background modeling. Only peaks exceeding a minimum 

velocity threshold are promoted to 3D points, while 

static returns remain available for filtering but are not 

emitted as point-cloud coordinates. Next, an angle of 

arrival (AoA)-FFT on the virtual array resolves both 

azimuth and elevation. By combining each moving 

target’s range and angle estimates, we reconstruct its 

denoised 3D location. Finally, we augment every point 

with its radial velocity and signal-strength feature, then 

pair the resulting point cloud with the corresponding 3D 

skeleton frame for dataset creation. 

Fig 3. Results of Processing Pipeline 

 

Fig 3. presents representative outputs of our 

preprocessing pipeline in a single composite layout. On 

the left, the 3D point cloud depicts the reconstructed 

spatial geometry of the moving subject. In the top-right, 

the raw range–doppler map—prior to CFAR filtering—

visualizes signal intensity across distance and radial 

velocity, illustrating the full spectrum of motion and 

background returns. The bottom-right shows a range–

azimuth heatmap constructed exclusively from zero-

doppler (static) returns, revealing the positions of fixed 

reflectors—such as walls and furniture—to provide 

essential spatial context and support robust ghost 

removal. Together, these views demonstrate how the 

pipeline progresses from raw measurements to filtered, 

structured data for deep-learning: initial FFT outputs, 

background characterization, and final point-cloud 

reconstruction.  

Ⅲ. Conclusion 

This work presents data collection and processing 

pipeline for indoor human detection and tracking, 

integrating mmWave radar streams with 3D skeletons 

from a stereo camera and applying cascaded range, 

doppler, and AoA FFTs to generate point clouds 

precisely aligned with pose annotations. The resulting 

multimodal dataset—composed of paired point-cloud 

and skeleton frames—lays the foundation for 

subsequent model development. 

In the next phase, these processed data will be fed 

into our neural network architecture to perform end‐to‐

end occupancy detection and trajectory tracking. 

Future work will focus on quantitative evaluation of 

detection accuracy and tracking stability under varying 

lighting and occlusion conditions, exploration of multi‐

person scenarios, and the incorporation of additional 

sensor modalities to further improve robustness and 

generalization. 
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