Implementation of an Occupancy Detection and Tracking System
Integrating Radar and Vision Sensor
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Abstract

This paper presents a real-time pipeline that synchronizes mmWave radar intermediate—frequency (IF) streams with
3D skeletons from a stereo camera, using cascaded range, doppler, and angle of arrival (AoA) FFTs with constant false
alarm rate (CFAR) filtering to reconstruct denoised 3D point clouds. Streaming over UDP ensures precise alignment of
radar and vision data. The resulting multimodal dataset of paired frames enables end—to—end neural models for robust
indoor occupancy detection and trajectory tracking.

I . Introduction

In indoor environments, human detection and tracking
are essential for applications such as smart homes,
security surveillance, and elder care. Conventional
object detection approaches primarily depend on visual
sensors like cameras. While camera-based systems
offer high-resolution visual information, they remain
vulnerable to lighting variations, occlusions, and
privacy concerns. To address these shortcomings,
mmWave radar has gained traction due to its
insensitivity to lighting and clothing variations and its
ability to penetrate non-—metallic barriers, thereby
providing reliable detection. However, radar
performance is limited by hardware specifications, and
the resulting point clouds are extremely sparse,
rendering fine—grained shape and pose estimation
challenging. Recognizing these challenges, recent deep
learning-based approaches have sought to extract
richer semantic information from sparse radar returns.
The mmMesh framework [1] employs VICON motion-
capture data as ground truth to train an SMPL-based
model capable of reconstructing dynamic 3D human
meshes from only a few dozen radar points per frame.
In parallel, mmYodar [2] converts radar point clouds
into pseudo-images and uses Azure Kinect-derived
bounding-box labels to optimize a YOLOv3 network for
accurate object detection. Building on these advances,
we propose a framework that (1) fuses constant false
alarm rate (CFAR)-filtered mmWave point clouds with
3D skeleton data from a ZED 2i stereo camera, and (2)
integrates these modalities within a deep learning

model to substantially enhance human detection and
tracking performance in indoor settings.

II. Method

This paper focuses on the design and implementation
of synchronized data collection and processing pipeline
for indoor occupancy detection and tracking. As
illustrated in Fig 1, our pipeline comprises three
sequential stages—data collection, data processing, and
dataset generation—that work in concert to produce
time-aligned mmWave point clouds and 3D skeletons.
In the first stage, raw sensor outputs are streamed into
the PC; the second stage applies signal-processing
routines to extract 3D points; and the final stage

assembles  point—and-skeleton data pairs for
subsequent deep—learning training and evaluation.
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Fig 1. Overview of Data Pipeline

A. Data Collection
For real-time operation, a commercial frequency
modulated continuous wave (FMCW) radar continuously
emits chirped waveforms and mixes received signal



with the transmitted signal to yield intermediate—
frequency (IF) samples. These IF data are packetized
and streamed over a custom UDP protocol, ensuring
minimal latency and packet loss. In parallel, a vision
sensor captures synchronized video frames from which
we extract 3D skeletons via its onboard SDK. By
timestamping both the IF packets and skeleton outputs
at acquisition, we guarantee precise temporal alignment
between the radar returns and ground-truth poses. To
ensure consistent sensor geometry throughout our
experiments, both devices are rigidly co-mounted on a
single frame. To illustrate this setup, Fig 2. shows the
testbed of the integrated radar and vision sensor, with
the subject positioned at a fixed distance and
orientation relative to both sensors.
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Fig 2. Testbed of Integrated Radar—Vision System

B. Data Processing

Upon arrival, IF packets are digitally decoded and
fed into a cascaded FFT pipeline. First, a range-FFT
converts time-domain samples into range bins,
followed by a doppler—FFT that produces a 2D range-
doppler map. We then apply a CFAR detector—but
instead of discarding zero—doppler cells as clutter, we
retain their amplitude information for ghost removal and
background modeling. Only peaks exceeding a minimum
velocity threshold are promoted to 3D points, while
static returns remain available for filtering but are not
emitted as point—cloud coordinates. Next, an angle of
arrival (AoA)-FFT on the virtual array resolves both
azimuth and elevation. By combining each moving
target’s range and angle estimates, we reconstruct its
denoised 3D location. Finally, we augment every point
with its radial velocity and signal-strength feature, then
pair the resulting point cloud with the corresponding 3D
skeleton frame for dataset creation.

Fig 3. Results of Processing Pipeline

Fig 3. presents representative outputs of our
preprocessing pipeline in a single composite layout. On
the left, the 3D point cloud depicts the reconstructed
spatial geometry of the moving subject. In the top-right,
the raw range—doppler map—prior to CFAR filtering—
visualizes signal intensity across distance and radial
velocity, illustrating the full spectrum of motion and
background returns. The bottom-right shows a range—
azimuth heatmap constructed exclusively from zero-—
doppler (static) returns, revealing the positions of fixed
reflectors—such as walls and furniture—to provide
essential spatial context and support robust ghost
removal. Together, these views demonstrate how the
pipeline progresses from raw measurements to filtered,
structured data for deep—learning: initial FFT outputs,
background characterization, and final point—cloud
reconstruction.

II. Conclusion

This work presents data collection and processing
pipeline for indoor human detection and tracking,
integrating mmWave radar streams with 3D skeletons
from a stereo camera and applying cascaded range,
doppler, and AoA FFTs to generate point clouds
precisely aligned with pose annotations. The resulting
multimodal dataset—composed of paired point—cloud
and skeleton frames—lays the foundation for
subsequent model development.

In the next phase, these processed data will be fed
into our neural network architecture to perform end-to-
end occupancy detection and trajectory tracking.
Future work will focus on quantitative evaluation of
detection accuracy and tracking stability under varying
lighting and occlusion conditions, exploration of multi-
person scenarios, and the incorporation of additional
sensor modalities to further improve robustness and
generalization.
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