
클라우드 네이티브 분산 처리 환경에서
eBPF 사이드카를 활용한 데이터 흐름 가시성 부여

김영호, 김종원*

광주과학기술원

kyoungho2018@gist.ac.kr, *jongwon@gist.ac.kr

Data Flow Visibility of Distributed Processing
in Cloud-Native Environment using eBPF Sidecar

YoungHo Kim, Jong Won Kim*

Gwangju Institute of Science & Technology

요 약

본 논문은 Driver-Executor 구조의 분산 처리 환경에서 Task 단위 데이터 흐름에 대한 가시성을 확보하는 방법을 제안한다.
이를 위해 Executor Pod에 Sidecar 형태로 eBPF 기반 트래픽 수집기를 배치하고, Driver가 제공하는 Task 정보를 참조하여
수집된 패킷을 식별한다. 각 Pod 내부에서 eBPF 프로그램을 격리 실행함으로써 인터페이스당 단일 프로그램 제한과 충돌
문제를 완화하며, 수집된 로그는 중앙 관제 요소로 전송되어 사후 분석에 활용된다. 실험에서 캡처된 모든 이벤트가 저장된
객체 정보와 누락 없이 일치함을 확인하여, 제안 방식이 Task 단위 데이터 전송 흐름에 대한 가시성을 제공함을 확인하였다.

Ⅰ. 서 론

AI 시대의 도래와 함께 데이터의 가치가 급격히 증가하고 있다. 특히

대규모데이터셋을활용한학습및분석이필수요소가되면서, 데이터프

라이버시와 데이터 보안에 대한 중요성도 전례 없이 부각되었다. 이에 따

라 데이터가 적절하게 사용되는지, 허가된 요소에서만활용되는지를관측

하고 검증할 필요성이 대두되고 있다.

기존 네트워크 모니터링 도구(tcpdump, Wireshark)는 송수신 주체를

식별할 수있지만, 애플리케이션수준의 데이터페이로드를 추적하기에는

한계가 있다. 분산 추적 도구(OpenTelemetry, Jaeger 등)는 요청 경로를

세밀하게 추적할 수있으나, 서비스 코드에 직접 API를 삽입해야 하며 페

이로드 추적은 기본적으로 지원되지 않는다[1]. 이로 인해 실제 데이터가

어떤 작업에 의해 어디로 전송되었는지를 식별하는 데는 충분하지 않다.

이러한 문제에 대해, 본 논문은 업무를 지시하는 Driver와 실제로 업무

를 처리하는 Executor로 구성된 분산 처리기의 데이터 사용 이력과 네트

워크 트래픽을 연결하고자 한다. 이를 통해 데이터 흐름에 대한 가시성

(Visibility)을 부여하여, 추적성을 얻기 위한 단초를 마련하고자 한다.

Ⅱ. 아키텍처 설계

본 논문은 쿠버네티스 클러스터 상에 배치된 Driver-Executor 구조의

분산처리기에 대해, eBPF 기반 트래픽로그 수집기를 Executor의 Sidec

ar로 붙이고, Executor로부터 작업정보를받아 로그에추가한후, 중앙수

집기를 통해 관제 요소(이하 ‘초소’)에 전달하여 특정 데이터의 이동 경로

와 중간지를 추정할 수 있도록 하고자 한다.

이러한 목적을 위해, 본 논문은 [그림 1]과 같은 환경을 구성하여 취약

점을 악용한 직접침투나 가로채기, 도청, 위장 및 위조 등의 공격으로 인

한데이터유출상황을최대한방지하고자한다. 이는 Executor 외의요소

로 인하여 데이터가 유출되는 상황을 최소화하기 위함이다.

민감도 및 기밀성을 기준으로 각 데이터에 C(Classified)/S(Sensitive)/

O(Open) 보안등급을 부여하고, 각 Executor에 접근 보안등급을 부여하는

다중 계층보안을 적용한다. 이를 통해 Executor가높은 등급의데이터에

접근하거나, 낮은 등급의 스토리지에 저장하는 것을 방지한다. 또한 가로

채기 및 도청을 방지하고자 Pod 간 통신 암호화를 적용하고, 구성원으로

위장하는 것을 방지하기 위해 상호 인증을 적용한다. 이는 공격자가 위장

하거나 통신을 도청하여 데이터를 획득할 가능성을 차단하기 위함이다.

이는 Cilium CNI의 `CiliumNetworkPolicy` CRD를 이용하여 Pod

Label 및 Namespace 기준 정책 적용을 통해 구현한다. 또한, WireGuard

기반 Transparent Encryption과 SPIFFE/SPIRE 기반 Mutual

Authentication으로 통신 암호화 및 상호 인증을 적용한다[2].

마지막으로내부침투를 방어하기위해각구성원의 행동을감시및통

제할수있어야한다. 이를 위해 eBPF 기반런타임보안도구인 Tetragon

을 적용한다. 이는커널 공간에서시스템 콜사용을 제한하거나 Container

Escape를탐지후 차단하는등컨테이너보안을 강화하는데에활용할수

있다[3]. 이를 활용하여 스토리지및 분산처리기에 직접침투하여 데이터

를 유출하는 행위를 방어할 수 있다.

그림 1. 쿠버네티스 클러스터 내 보안 강화를 위한 구성요소 배치 및

주요 보안 기능



분산 처리기는 다음과 같은 전제조건을 따른다. 이는 상황 시나리오를

단순화하고, 데이터 흐름 추적 가능성 검증에 집중하기 위함이다.

1. 데이터를 저장하는 스토리지는 객체(Object) 스토리지로 한정한다.

이는 REST API로 데이터에 접근하는 특성을 활용하기 위함이다.

2. 데이터 흐름은 Source → Executor → Destination으로 한정한다. 여

기서 Source와 Destination은 스토리지이며, Executor는 Source에서 데

이터를 가져와 처리 결과를 Destination에 저장한다.

3. Executor는 데이터 처리과정에서외부와통신하지않는다. 즉, 데이

터 수신 이후의 통신은 Destination으로의 데이터 전송으로 취급한다.

4. Source는 항상 Executor와 같은 클러스터에 존재하지만, Destinatio

n은 클러스터 외부에 존재할 수 있다고 가정한다. 이에 따라 Destination

을 향한 전송을 직접적으로 제어하지 못할 수 있으며, 따라서 사전 통제

실패와 부적절한 Destination 지정으로 데이터 유출이 발생할 수 있다.

Ⅲ. 아키텍처 구현

위에서제시한 실행환경과 전제조건을 바탕으로, 데이터흐름 추적 및

유출 가능성을 식별하는 분산 처리기의 구조를 제시한다.

[그림 2]는 Driver-Executor 구조의 분산 처리기의 구조와 상호작용을

의미한다. Driver는 제출된 작업(이하 Job)을 데이터 범위를 기준으로 여

러 소작업(이하 Task)으로 분할하고, 각 Task를 Executor에 할당한다.

Executor는 할당된 Task를 처리하는 주체로, 데이터를 직접 다루고,

Source와 Destination과 직접 통신한다. 그렇기에 실질적인 데이터 유출

은 Executor에서발생하며, 이의 Outbound 트래픽을 관측하면 데이터 유

출 시 원인 후보군을 파악할 수 있다.

이러한목적을위해 Executor를 2개의구성요소로나눈다. 하나는실제

작업을 처리하는 Runner이며, 나머지는 eBPF 프로그램으로 트래픽을 수

집하는 Watcher이다. Watcher는 Runner의 Sidecar로 존재하며, 생성 직

후 Pod 내부 공유 네트워크 인터페이스에 TCX/Egress 프로그램을 부착

한다. 데이터는 Ringbuf Map으로 커널 영역에서 유저 영역으로 전달되

며, Watcher는 이를 Task 정보와 결합한 뒤 Collector로 전달한다.

Watcher를 Sidecar로 부착하는 이유는 다른 eBPF 프로그램 간 충돌

문제를 방지하면서 운영 자유도를 확보할 수 있기 때문이다. 일반적인 도

구들은 [그림 2] 기준 `lxc` 인터페이스에 프로그램을 부착하는데, TC 프

로그램은 `TC_ACT_OK` 등 처리 종료 값을 반환하면 후순위 프로그램

이 무시되며, 2개 이상이 즉시 처리를 종료하면 반드시 일부는 동작하지

않는다는 문제가 있다. 하지만 Pod 내 공유 인터페이스에 부착하는 도구

는 확인되지 않았으며, Sidecar를 경유하면 eBPF 프로그램 목록을 직접

관리할 수 있기에 그러한 문제는 발생하기 어렵다. 다만 eBPF 프로그램

을 Pod 내에 부착하고, RingBuf Map을 사용하려면Watcher에 CAP_NE

T_ADMIN, CAP_BPF, CAP_PERFMON 권한을 부여해야 한다.

UDS(Unix Domain Socket)는 Task 정보 교환 및 로그 전송 경로로

쓰인다. 이는 eBPF 프로그램을 우회하여 무가치한 로그 수집으로 인한

오염 및 혼란을 제거하기 위함이다. Collector는 Host에 UDS를 두고,

Watcher가 이를 HostPath Volume으로 가져와 이를 통해 Collector에게

로그를 전달한다. 또한 Watcher는 UDS를 Pod 내 공유 EmptyDir

Volume에 배치하며, Runner가 이를 통해 Task 정보를 전달한다.

Ⅳ. 실험 구성 및 결과

아키텍처의 유효성을 확인하고자 PostgreSQL을 초소로 사용하고, 동

일 클러스터에 MinIO 1개를 배포하여 Source로, AWS EC2 2개에 각각

MinIO를 배포하여 Destination으로 활용한다.

Executor는 Source에서 csv 데이터를 읽고, 이를 gzip으로 압축해 임

의의 Destination(MinIO)에 저장하였다. 저장 시 파일 이름에는 Task 단

위의 작업 식별자와 데이터 범위를 포함하여, 트래픽 로그와의 직접 비교

가가능하게 하였다. 파일 이름과 MinIO의 IP를 수집된 트래픽과상호 비

교하여, 각 Task에서 실제로전달한대상과트래픽으로 식별된대상의 일

치여부를 파악할수 있다. 이를 이용하여 Task 단위 데이터 흐름을식별

할 수 있음을 보이고자 한다.

PostgreSQL 기록과 MinIO 저장 객체를 상호 비교한 결과, 식별된 모

든 전송에 대응하는 객체를 발견할 수 있었으며, 누락되거나 불일치한 경

우는 발견되지 않았다.

Ⅴ. 결론

본 논문은 분산 처리기의 eBPF 기반 트래픽 추출 Sidecar를 도입하여

Task 정보와트래픽로그의결합을통해데이터의이동경로추적가능성

을 제시하고 이를 검증하였다.

하지만 트래픽을 단순히 Task에 명시된 데이터 범위와 연결하므로 사

용되거나 저장된 데이터 범위는 더 좁을 수 있으며, 전체 데이터 흐름을

제시하지 않고 상호작용 대상만을 알려준다는 한계점이 있다.

ACKNOWLEDGMENT

본 논문은 2019년도 정부(과학기술정보통신부)의 재원으로 정보통신기획
평가원의 지원을 받아 수행된 연구임 (No. 2019-0-01842, 인공지능대학
원지원(광주과학기술원))

참 고 문 헌

[1] N. M. Popa and A. Oprescu, "A data-centric approach to
distributed tracing," in Proc. 2019 IEEE Int. Conf. Cloud Comput.
Technol. Sci., Sydney, Australia, Dec. 2019, pp. 209–216.

[2] A. Gupta, "Zero Trust Security with Cilium," Isovalent, 2024. [Onli

ne]. Available: https://isovalent.com/blog/post/zero-trust-security-

with-cilium/.

[3] N. R. Ivánkó, "Detecting a Container Escape with Tetragon and eB

PF," Isovalent, Jul. 2024. [Online]. Available: https://isovalent.com/b

log/post/2021-11-container-escape/.

그림 2. 분산처리기의 데이터 흐름 가시성 확보를 위한

Executor 내부 구조 및 eBPF 기반 트래픽 로그 수집 방식


