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요 약

본 논문에서는 스마트 팩토리 환경에서 탄소 중립 목표를 달성하기 위한 최신 생산 최적화 기술 동향을 분석하였다. 제조
산업은전 세계 탄소 배출량의상당부분을차지하고 있어, 생산 효율과 탄소 배출량을동시에 최적화하는기술개발이 필수
적이다. 특히 IoT 센서, 디지털트윈, 클라우드및 엣지컴퓨팅과같은 첨단기술들이스마트 팩토리에서에너지 효율개선을
위한 핵심 요소로 자리 잡고 있다. 특히 휴리스틱 최적화 기법과 기계학습 기법의 두 가지 주요 접근 방식을 중점적으로
다룬다. 휴리스틱 접근법에서는 작업장 스케줄링(JSSP) 문제에 참새 검색 알고리즘(SSA)과 회색 늑대 최적화(GWO)를 적
용하여 생산 시간과 탄소 배출량을 효과적으로 감소시키는 연구 사례들을 분석하였다. 기계학습 기법에서는 강화학습 및
그래프 주의 네트워크(GAT)를 활용한 다목적최적화 사례를 통해 공정간의 복잡한상호작용을 효율적으로 관리하고, 생산
지연과 에너지 소비를 동시개선하는 방법론을 살펴보았다. 결론적으로 스마트 팩토리에서 지속 가능한 생산 시스템을 구축
하기 위한 기술적 가능성을 제시하고, 이를 통해 제조 산업의 지속 가능성과 생산 효율을 동시에 달성할 수 있을 것으로
기대된다.

Ⅰ. 서 론

지구 평균기온상승을연 1.5°C 이내로제한하려는 파리 협약이후, 2050

년까지 전지구 이산화탄소 순배출량을 0이 되도록 하는 Net-Zero.로드맵

은 각국 정부와글로벌 공급망전반에 구속력있는감축목표를 부여하고

있다 [1]. 특히 제조업은 에너지 직접 사용과 공정 배출을 합쳐 전 세계

CO₂배출의 약 25%를 차지하며, 전력 사용을 포함하면 그 비중은 더 커

진다 [2]. 스마트 팩토리가 주도하는 디지털 전환이 생산 효율을 높일 수

있다고 하더라도, 여전히 탄소 집약적 공정이 남아있는 한 친환경과 고효

율이라는두목표를동시에달성하는것은어렵다. 이에따라스마트팩토

리에서의 탄소 배출 최적화는 생산 기술최적화와 동등한 수준의 설계목

표로 부상하고 있다.

스마트 팩토리에서는 IoT 센서, 디지털 트윈, 클라우드/엣지 컴퓨팅 등을

활용하여 실시간으로 공정에서의 에너지 데이터를 이미 확보하고 있다.

이러한데이터들을 기반으로스마트팩토리에서의에너지 효율개선을통

해 온실가스 배출을 줄이고 생산 비용을 낮추려는 연구가 활발하게 이루

어지고 있다 [3]. 이에 본 논문에서는 탄소 배출을 고려한 스마트 팩토리

에서의 생산 시스템 최적화 기술 동향에 대해 논한다.

Ⅱ. 본론

스마트 팩토리에서의 생산 최적화에는 탄소 배출량 절감과 함께 생산 효

율을높이는것을함께고려하여야한다. 복잡한여러문제를공동으로최

적화하기위한 방법으로휴리스틱최적화기법과 기계학습기법으로각각

나누어 논하였다.

i. 휴리스틱 최적화 기법을 통한 생산 최적화

생산 시스템 최적화에 주로 사용되는 모델링으로는 작업장 스케줄링

(Job Shop Scheduling Problem, JSSP)이 있다. [4]에서는 에너지 소비와

작업자의 학습 효과를고려한 JSSP 모델링을 통해 현장에서 업무를 많이

하면 작업 속도가 빨라지는 숙련도 상승 효과를 모델링하고, 공정을 운영

할때 뿐만아니라 idle 상태일때의 전력을 고려한 탄소 배출량을 함께 고

려한모델을제시하였다. 생산완료시간과총탄소배출량을동시에최소

화하기 위해, 참새 검색 알고리즘 (Sparrow Search Algorithm, SSA)을

적용하여다른휴리스틱 방식에비해생산시간은 최대 46%, 탄소 배출량

은 최대 41% 감소하는 효과를 보였다. [5]는 용접 공정이 많은 제조 공정

에서 제품 생산 속도와 탄소 배출량을 동시에 최적화하고자 하였다. 특히

용접 공정에특화하여각 작업이여러 단계를 동일한 순서로 거쳐야 하지

만 한 번에 여러 대의 용접기를 사용하는 것이 가능하여, 몇 대를 동시에

같이쓸것인지를의사결정변수로설정하였다. 이를 위해생산시간과탄

소 배출량의 균형을 이루기 위한 이중목표 혼합정수 모델

(Multi-Objective Mixed Integer Model)을만들고, optimal solution을 도

출하는 데는 연산량 폭증 문제가 있기 때문에 회색 늑대 알고리즘 (Grey

Wolf Optimization, GWO)을 용접 스케줄링 문제에 맞게 수정한 알고리

즘을 제시하였다. GWO는 늑대 무리에서의 서열을 최적화 식의 해에 대

입하여, 추적과 포위, 공격으로 이어지는 사냥 전략에 맞추어 최적 해를

업데이트하는 방식의 알고리즘이다 [6]. [5]에서는 초기에는 무작위 휴리

스틱으로 늑대(해)의 탐색 폭을 넓히고, 우수 해의비중을 점점 늘려서수

렴을가속화시킨다. 이때해가거의수렴되어작업시퀀스가고정되면작

업과 단계 시퀀스에 따른 Activity on Edge (AoE) 네트워크 다이어그램

을 만든다. 이를 통해 생산 시간 (makespan)을 계산하고 그에 따라 공정



기계 운영 대수를 결정하여 시간과 탄소 배출량을 공동으로 최적화한다.

ii. 기계학습 기법을 통한 생산 최적화

강화학습은 다목적 최적화 문제를 해결하는 데에 널리 사용되고 있다

[7-8]. 여러 군데의 공장이있고 각라인마다 공정 단계와 기계 구성이 다

를 때, [9]에서는 납기 지연을 최소화하면서 공정의 총 에너지 소비를 최

소화하는문제를풀고자하였다. 공정별로단계별작업정보, 에너지상태,

블로킹 위험 등을 강화학습의 상태로 구성하고, 현재 작업 풀에 있는 8개

의 후보 작업 중 하나를 선택하는 것을 행동으로 한다. 그에 따른 보상은

현재 선택한 행동으로 인해 발생한 지연 시간과 에너지 사용량의 음수값

으로 하여, 지연 시간과 에너지 사용량이 작을수록 높은 보상을 받게 된

다. 각 공장을 에이전트로 하고, 이들을 비동기 작업으로 배치하면서 각

에이전트가선택한 작업이전체스케줄에반영되면 이는다른에이전트의

관측에 즉시 반영되어 간접적으로 에이전트 간 협력 효과를 낼 수 있다.

강화학습 기반접근법을 통해지연시간은 18%, 에너지소비는 27% 개선

하였다. [10]에서는 작업장 스케줄링과 기계의 탄소 배출을 통합하고, 여

러 노드의 작업을이접 그래프 (Disjunctive Graph)로 모델링하여스케줄

효율 향상과 탄소 배출 절감을 동시에 최적화하고자 하였다. 그래프 주의

네트워크 (Graph Attention Network, GAT)를 적용하여 공정 단계, 남은

처리시간, 기계의가동/유휴정보등 상태를표현하여중요노드의 가중치

를 파악하고, 공정 선택과 기계 할당을 동시에 수행하는 행동 쌍을 만든

다. 보상은 단일 스칼라로 합치면 한쪽이 가려질 수 있어 완료 시간과 탄

소 배출량의 벡터로 구성하여 두 축을 독립적으로 학습한 후최종의사결

정시가중합을이용해파레토해를생성한다. 이를 통해휴리스틱방법론

대비 최대 12%의 효율향상을 이루면서도 탄소배출량은 최대 8%까지절

감하는 효과를 보았다.

Ⅲ. 결 론

본 논문에서는 탄소 중립 실현을 목표로 스마트 팩토리 환경에서 생산

효율과 탄소 배출량을 동시에 최적화하는 최신 연구 동향을 살펴보았다.

스마트 팩토리는 IoT 센서, 디지털트윈, 클라우드및 엣지컴퓨팅기술을

활용하여 공정의 에너지 데이터를 실시간으로 수집하고 있으며, 이를 기

반으로 하는 데이터 주도의 최적화 기법들이 두드러지게 연구되고 있다.

휴리스틱 최적화 방법론에서는 JSSP와 같은 복잡한 공정 스케줄링 문제

에서 탄소 배출량과 생산 완료 시간을 동시에 최소화하기 위한 모델링과

솔루션이제안되었다. 개선된 SSA와 GWO 같은 휴리스틱 접근법은 문제

의 연산 복잡도를 효율적으로 다루면서도 실질적으로 생산 시간과 탄소

배출량의 감소를 보였다.

한편, 기계학습 기반 최적화는 강화학습과 GAT 등을 활용하여 공정 간

상호작용과 복잡한 의사결정을 효과적으로 모델링하였다. 이러한 접근은

개별 공정의 에너지 상태, 지연 시간, 블로킹 위험 등 세부적인 요소를 상

태로 통합하고, 행동의 결과에 따라 직접적인 보상을 제공하여 복잡한 다

목적 문제의 최적화를이루었다. 특히, 여러 공장을 에이전트로하는 강화

학습 기반의 비동기적 협력 전략을 통해납기지연과 에너지소비를 효과

적으로 동시에 개선하였다.

이와 같은 연구들은 스마트 팩토리에서의 지속 가능한 생산 최적화의 중

요성을 강조하며, 앞으로의 연구 방향으로는 다양한 최적화 기법의 하이

브리드화와현장 적용성을높이기위한실시간 의사결정시스템의개발이

요구된다. 이를 통해제조업에서탄소중립목표달성과생산효율의동시

실현이라는 글로벌 과제를 효과적으로 해결할 수 있을 것으로 기대된다.
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