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요 약  
본 논문에서는 무선 채널 품질 악화에 따른 송수신기 간의 입력 Feature 벡터 차원 불일치로 인한 Semantics 

Misalignment 를 빠르게 해결하기 위한 통신 및 학습 기법을 제안한다. 채널 변화에 따른 입력 데이터의 Feature 차원 및 

학습 데이터 숫자를 제어하고, Low-Rank Adaptation (LoRA)를 사용한 Fine-Tuning 기법을 통해 Task 를 신속히 

해결한다. V2X 송수신기를 통한 실제 실험 결과, 제안 기법은 End-to-End Training 모델에 비해 비약적인 통신 및 시간 

절감을 가능하게 하면서도 97.6%의 높은 분류 정확도를 보인다. 
 

Ⅰ. 서 론  

지능형 단말과 고밀도 사물이 연결되는 6G 시대에는 비
트 단위의 전송보다는 의미 (Semantics) 기반 정보 전
달의 효율이 통신의 품질을 결정한다  [1]. 그러나 무선 
채널 품질은 수시로 변화하여 전송 가능한 Feature 벡
터의 차원 수가 달라지고, 이로 인해 송신기 (TX)에서 
보내는 차원과 수신기 (RX)의 Pre-Trained 모델 간의 
Semantics Misalignment 가 발생하며 Task 성공률을 
급격히 저하시킨다 [2]. 이러한 문제를 저지연으로 해결

하기 위해, 본 논문에서는 기존 Pre-Trained 모델을 유
지하면서도, 송신기에서의 Feature 벡터의 차원 제어 
및 Fine-Tuning을 통해 Semantics Misalignment를 빠
르게 해결한다. 

Ⅱ. 시스템 모델  

 본 논문에서는Split 구조의 Semantic Communication 을 

고려한다. 이 때, TX 와 RX 하나의 쌍을 고려하는데, TX 

측 인코더는 입력 이미지를 Principle Component 
Analysis (PCA)를 통해 N 차원 Feature 벡터로 압축하며, 

채널 상태에 따라 보낼 수 있는 차원의 수를 제어할 수 

있다. RX 측 디코더는 End-to-End Training 된 MLP 

기반 모델을 보유하고, 수신한 PCA 벡터를 복원하여 
분류하는데 사용한다. 채널 환경의 변화로 전송 차원이 

달라지면 원본 데이터가 그림 1 과 같이 바뀌게 된다. 

바뀐 이미지를 분류하기 위해선 새로운 모델의 재학습이 

필요한데, 이 때 End-to-End Training 은 많은 데이터와 

시간을 필요로 하고 무선 채널 환경의 Variation 에 
효율적으로 대응이 불가능하다. 

 

 
그림 1. MNIST 데이터의 차원 별 PCA 결과 

 

Ⅲ. Low-Rank Adaptation (LoRA) 기반 Fine-Tuning 

 III. A 를 통해 Dimension 변화에 따른 통신 Payload 구

성을 설명하고, III. B 를 통해 LoRA 알고리즘에 대해 구

체적으로 설명한다. III. C 에서 TX, RX 송수신의 프레임워

크에 대해 논의한다. 
 

A. Dimension 변화에 따른 통신 Payload 구성 

채널 상태 변화로 인해 TX 에서 전송할 테스트 데이터

셋의 차원이 감소하고, 차원이 감소함에 따라 통신 

Payload 에 여분의 용량이 생긴다. 여분의 용량에 Fine-
Tuning 용 학습 데이터셋을 함께 전송하는데, 이 때 최대 

전송용량을 𝐵!"#로 정의할 때, 전송 가능한 학습 데이터

셋의 최대 개수는 다음과 같다: 	

𝑁!"# = %
𝐵!"# −𝐻 − 𝑡(ℎ + 𝜎𝛼)

ℎ + 𝜎𝛼 /. 

	
위 식에서 𝐻는 테스트 및 학습 데이터셋의 파일 전체의 

헤더(8byte)이고, ℎ는 벡터 한개의 헤더(4byte)이다. 𝑡는 
테스트 데이터의 수, 𝛼는 PCA 를 진행할 차원의 수이며, 

𝜎는 𝛼당 바이트 수(float 한개당 4byte)를 뜻한다. 이 식

을 통해 TX 는 PCA 차원마다 보낼 수 있는 학습 데이터

셋의 수를 계산하여 테스트 데이터셋과 함께 RX 로 송신
한다. 

	

그림 2. 시스템 프레임워크 (RX 에서 1 번 진행 후 2 번을 진행한다.) 

B. Low-Rank Adaptation 

LoRA[3]는 Pretrained Model 의 원본 가중치 행렬 𝑊
에 직접 손대지 않고, Low Rank 행렬 𝐴, 𝐵를 추가로 학습

하는 Fine-Tuning 기법이다. 𝑊  대신 ∆𝑊 = 𝐴𝐵를 학습

함으로써 학습 데이터셋과 Epoch 를 줄이면서도 모델의 

성능을 유지한다. 랭크 𝑟을 조절하여 ∆𝑊의 용량과 학습 

복잡도를 제어하고, Pre-Trained 모델의 지식은 고정한 
채로 새로운 차원의 특징에 빠르게 적응한다. 



 

C. 데이터 송수신 프레임워크 

 그림 2 는 본 시스템의 프레임워크를 나타낸다. 먼저 

TX 에서 분류할 테스트 데이터셋을 차원 𝛼로 PCA 하여 

Feature 벡터를 추출한 후에, Payload 구성에 따라 학습 

데이터셋의 최대 개수 𝑁!"#를 계산하여 그 수 만큼 동일 

차원으로 PCA 를 진행한다. 그 후 각 데이터셋의 
Feature 벡터들을 RX 로 전송을 하면, RX 에선 테스트와 

학습 데이터셋의 Feature 벡터들을 Inverse PCA 하여 

이미지를 복원한다. 복원한 학습 데이터셋을 이용하여 

Pre-Trained 모델을 LoRA Fine-Tuning 으로 학습하고, 
복원한 테스트 데이터셋을 학습시킨 모델에 입력하여 

Classification 을 진행한다. 

Ⅳ. Experiments 

 TX, RX 역할을 하는 두 대의 SIRIUS [4] 기기와 각각 

연결된 두대의 노트북을 약 2m 간격으로 배치한다. 기존 
256QAM 에서 64QAM 의 변조방식으로 설정하여 채널 

상태가 악화된 상황을 가정하였다. RX 가 보유한 Pre-

Trained 모델의 차원인 200 차원의 3/4인 150 차원을 

시작으로 10 차원 단위로 실험을 진행하였다. RX 는 

수신한 학습 데이터셋을 이용하여 Pre-Trained 모델을 
내장 CPU 를 통해 Fine-Tuning 하여 학습시킨 후, 

수신된 테스트 데이터셋을 Fine-Tuned 모델에 입력하여 

실험의 Task 인 MNIST 데이터셋의 분류 성능을 

검증한다. 
Latency 측정의 경우, TX, RX 역할을 하는 각 SIRIUS 

기기가 GPS 수신기로부터 Pulse Per Second (PPS) 

신호로 동기화된 시간을 출력한다. TX 에서 PCA 를 

시작하는 순간의 시각을 𝐴 , RX 에서 데이터를 수신한 

뒤에 Image Reconstruction 이 완료된 순간의 시각을 𝐵, 
Fine-Tuning 으로 Pre-Trained 모델을 학습하는데 

걸리는 시간을 𝐶 , 분류에 걸리는 시간을 𝐷라고 한다면, 

전체 Latency 를 나타내는 식은 다음과 같이 정의할 수 

있다. 
𝐸𝑛𝑑 − 𝑡𝑜 − 𝐸𝑛𝑑	𝐿𝑎𝑡𝑒𝑛𝑐𝑦	 = (𝐵 − 𝐴) + 𝐶 + 𝐷. 

 

위 식에서 Computing Latency 에 해당하는 𝐶와 𝐷를 

제외한 (𝐵 − 𝐴)를 PCA 에 걸리는 시간이 짧다는 점을 

고려하여 Communication Latency 로 간주할 수 있다. 
그림 3 은 각 차원에서의 세가지 Latency 들을 출력한 

결과이다. 낮은 차원으로 PCA 를 진행할수록 테스트 

데이터셋의 용량이 적어져 더 많은 학습 데이터셋을 

RX 로 전송할 수 있는데, 그만큼 Fine-Tuning 을 진행 

할 때의 데이터 양이 많아져 더 오랜 시간이 걸리기 
때문에 𝛼가 높아질수록 Fine-Tuning 에 걸리는 시간이 

줄어드는 경향성을 보인다. 그림 4 는 각 차원을 사용했을 

때 End-to-End Training 모델과 LoRA Fine-Tuning 된 

Pre-Trained 모델의 분류 정확도를 비교한다. 𝛼 = 40일 

때를 제외한 모든 차원에서 LoRA Fine-Tuning 을 한 
모델이 더 우수한 성능을 보이는 것을 확인하였다. 

Ⅴ. 결론 

 본 논문에서 무선 채널의 품질이 악화되어 전송 

가능한 Feature 벡터의 수가 줄었을 때 TX 와 RX 간에 

발생한 Semantics Misalignment 를 신속히 해결할 수 
있는 통신 및 학습 기법을 제안한다. 기존의 Backbone 

Model 을 LoRA  Fine-Tuning 을 통해 기존 End-to-

End Training 모델의 성능을 유지하였다. 추후에는 

제안하는 알고리즘을 다양한 데이터셋과 채널 환경에서 

검증하고 최적의 차원 제어 기법에 대해 연구할 
예정이다. 

 
그림 3. Latency-Dimension 그래프 

  

 
그림 4. Accuracy-Dimension 그래프 
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