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요 약

본 논문은태양광 발전소의 시계열 데이터를 다수의 외부 연구자와 공유할 때 발생할수 있는 지역 및 특성 식별 가능 문제
를해결하기 위해, 유효전력, 무효전력, 전류 항목을중심으로한비식별화 기법을제안한다. 고해상도의전력 데이터는인공지
능 기반 예측과 제어 기술 개발에 핵심적이지만, 발전소의 위치나 규모가 간접적으로 노출될 수 있어 공공 데이터 개방 및
학술 공유에 제약이 따른다. 이에 따라 본 연구는 각 항목의 전기적 특성과 데이터 분포에 따라 맞춤형 정규화 기법을 적용하
였으며, 전압은 재식별 위험도가 낮아 비식별화 대상에서 제외하였다. 또한, 비식별화 전후 데이터를 이용해 머신러닝 기반
예측 실험을 수행한 결과, 데이터 활용성의 손실 없이 정보 보존이 가능함을 확인하였다.

Ⅰ. 서 론

최근 재생에너지의 보급 확대와 더불어, 태양광 발전소의 운영 데이터

를 활용한 다양한인공지능 기반 분석, 예측, 최적 제어 기술의 개발이 활

발히 이루어지고 있다. 이러한 기술은 실시간 모니터링, 고장 진단, 예측

제어 등 고도화된 서비스를 가능하게 하며, 이를 위해 1분 또는 1초 단위

의 고해상도 발전량, 전력 품질, 기상 정보 등을 포함하는 시계열 데이터

가 핵심 자산으로 강조되고 있다. 이러한 고정밀 데이터는 데이터 생산자

의보안이있어야하는경우가대부분이므로, 기술 발전을위해개방된환

경에서의 공유가 제한된다. 따라서 본 연구에서는 태양광 데이터 허브 구

축을 전제로, 데이터를 외부와 공유하되 개별 발전소나 지역의 식별이 불

가능하게 하기 위한 비식별화 기법을 적용하였다. 특히, 유효전력(Active

Power), 무효전력(Reactive Power), 전류(Current) 등의 전력 관련 주요

항목에 대해 특성에 맞는 스케일링 및 구조적 변환을 수행하였으며, 전압

(Voltage)은 전기적 특성과 영향력을고려하여비식별화 대상에서 제외하

였다. 본 논문은 이러한 전력 데이터 비식별화 방안의 설계 근거와 적용

결과를 제시하고, 데이터 활용성과 보호 수준 간의 균형을 조율한 방안을

제시한다.

Ⅱ. 본론

1. 비식별화의 필요성과 목적

태양광발전소데이터는특정시간대의발전출력, 전압, 전류, 무효전력

등다양한전력품질요소를포함한다. 이러한데이터를시간단위로정밀

하게 수집하는 경우, 누적된 시계열 데이터를 통해 기상 패턴, 일조 시간,

출력 분포 특성 등을 기반으로 발전소의 지리적 위치 추론이 가능하다

[1][2]. 특히국내처럼지역별일사량패턴이뚜렷한경우, 발전량곡선만으

로도 데이터 출처 지역 및 발전소를 식별할 가능성이 있다.

본 연구에서는 국가 또는 지자체 차원에서 구축된 데이터 허브에 태양

광 발전 데이터가 외부 기관이나 산업체와의 협력을 목적으로 공유되는

시나리오를 가정하였다. 이 과정에서 데이터를 활용하는 예비 연구자의

연구 효용성을 보장하되, 데이터의 익명성을 보장하기 위하여 출력 특성

을정규화하여설비추정을어렵게하기위한방식을도입하였다. 이는 단

순한개인정보보호의차원을넘어, 지역 기반식별가능성자체를제거하

고, 공정한 인공지능 학습 환경을 제공하기 위한 비식별화 목적이다.

2. 항목별 비식별화 처리 전략

본 연구에서는 태양광 발전 데이터 중에서도 식별 가능성이 높고 물리

적 해석이 중요한 항목들을 선별하여 비식별화를 수행하였다. 그 대상은

유효전력, 일(Day) 누적 발전량, 무효전력, 전류 항목이며, 각각의 전기적

특성과 데이터 분포 특성을 고려해 정규화 방식과 범위를 다르게 설정하

였다. 반면, 전압은 재식별위험도가낮고, 전력계통의안정성유지를위해

실질적인 수치 보존이 필요하므로 비식별화 대상에서 제외하였다.

유효전력은 태양광 인버터를 통해 계통에 실질적으로공급되는순간전

력이다. 일반적으로 발전기의 최대 출력에 가까운 값을가지며, 장비 용량

및 시스템 크기를 직접적으로 반영한다. 정규화 전의 유효전력 데이터를

그대로 공개할 경우, 발전소의최대출력 용량 유추가 가능하다. 유효전력

은 전체 데이터 구간에 대하여 최소 및 최대 범위를 기준으로 Min-Max

정규화를 적용하였다. 정규화 범위는 0에서 100 사이의 비율 값으로 설정

하여, 발전량의 상대적인 추세는 유지하되 실제 절댓값은 유추할 수 없도

록 하였다.

누적 발전량은 하루 동안 발생한 전력량의 누적값이며, 일사량 총합 또

는 지역 기상 조건을 기반으로 하루 최대 발전량을 유추할 수 있다. 하루

최종누적값이크면발전량이높은지역임을추론가능하며, 이는 지역식

별의 단서가 될 수 있다. 하루 단위로 데이터를 분할 후, 각 날짜의 최대

누적 발전량을 기준으로 해당 하루치 데이터를 정규화하였다. 이를 통해

증가 패턴은 유지하되, 발전 총량 수치는 숨길 수 있도록 설계하였다.



무효전력은 전압 유지와 위상 보정을 위한 전력이다. 실제 에너지로 소

비되지는 않으나, 전력계통의 운전 안정성을 결정짓는 주요 요소이다. 특

히 부호가 존재하므로, 부호 정보는 그대로 유지해야 한다. 무효전력은

Min-Max 정규화 대신 절댓값 기준의 MaxAbs 정규화를 적용하였다. 정

규화 범위는 –100에서 100까지의 비율 값 범위로 설정하여 부호 정보는

그대로 유지된다. 이렇게 하면 공급 및 흡수 특성을 학습에 사용할 수 있

으면서도, 수치적 크기는 비식별화할 수 있다.

전류는태양광 인버터의직류출력또는 3상교류전류로, 출력 전력및

인버터 용량과 비례한다. 특히 AC 전류는 발전소의 최대출력과 전압과의

관계를 통해 유효전력을 추정할 수 있는 간접 정보가 된다. 각 전류 항목

에 대해 개별적으로Min-Max 정규화를 수행하였으며, 정규화범위는모

두 0에서 100까지의 비율 값으로 설정하였다. 전류는 값의 절대적 크기보

다는변화율혹은부하흐름과같은패턴이중요하므로, 정규화를통해설

비 유추 위험을 줄이면서 데이터의 분석 가치는 유지하였다.

항목 정규화 수식 정규화 범위

유효전력 maxminmin × 0 ∼ 100

누적 발전량 max × 0 ∼ 100

무효전력 max × -100 ∼ +100

전류 maxmin
min × 0 ∼ 100

표 1 항목별 비식별화 방법

3. 비식별화에 따른 데이터 활용성 비교

본 연구에서는 정규화 기반 비식별화 기법이 태양광 발전 데이터의 활

용 가능성에 미치는 영향을 정량적으로 평가하기 위해, 비식별화 처리 전

후의 데이터를 활용하여 동일한 조건으로 발전량 예측 모델을 학습하고

그 성능을 비교하였다.

실험 대상은 1분 단위 유효전력 데이터와 수치예보모델(Numerical

Weather Prediction, NWP) 기반의 기상 데이터를 결합한 시계열 데이터

셋으로, 종속 변수는 1시간 단위로 집계된 태양광 발전량이다. 이를 위해

원본 및 비식별화데이터의 kW 단위의값을 kWh 단위로 계산하고, 60분

단위로시간해상도를 변환하였다. 독립 변수는수치예보모델에서추출한

일사량 및 구름양관련 특성을사용하였으며, XGBoost 회귀모델을 기반

으로 학습을 수행하였다[3]. 모든 실험은 동일한 파라미터 조건에서 이루

어졌으며, 학습 및테스트데이터는일관된방식으로 분할되었다. 예측 성

능평가는평균 절대오차(Mean Absolute Error, MAE)의 정규화지표인

nMAE(normalized MAE)와 결정계수(R², Coefficient of Determination)

를 사용하였다. nMAE는 데이터의크기단위또는값의분포범위에따른

차이를 정규화한다. 따라서, 본 연구에서의 비식별화 전후 데이터의 예측

오차를상대적인 관점에서비교하기에적합하다. 결정계수는회귀모델이

종속 변수의 분산을 독립 변수로부터 얼마나 잘 설명하는지 나타내는 지

표이다. 예측 수행 결과와 성능 지표는 다음과 같다.

그림 1 원본 데이터의 태양광 발전량 예측 그래프

그림 2 비식별화 데이터의 태양광 발전량 예측 그래프

구분 nMAE R²
원본 데이터 0.65527 0.40603
비식별화 데이터 0.65530 0.40604

표 2 원본 데이터와 비식별화 데이터의 성능 지표

실험 결과, 각 모델의 성능 지표에서 소수점 셋째 자리 이하에서 극히

미세한 차이만을 보였으며, 사실상 비식별화 처리에 따른 성능 저하가 없

다고 판단할 수 있다. 특히 결정계수 값이 거의 유사하다는 점에서, 정규

화처리에도불구하고기상변수와 시간당발전량 간의 상관 구조가 손상

되지않았음을확인할수있다. 이는 비식별화된데이터가예측모델학습

에 필요한 정보를 충분히 보존하고 있음을 의미한다.

이러한결과는정규화기반의비식별화기법이데이터의 재식별 위험을

효과적으로 낮추면서도, 예측 분석 및 모델링에 필요한 정보의 유용성을

유지할 수 있음을 시사한다. 특히 공공 또는 산업적 목적의 태양광 발전

데이터공유시, 비식별화데이터를통해충분한모델학습과예측이가능

함을 보여주는 경험적 사례로서 의미를 가진다.

Ⅲ. 결론

본논문에서는태양광 발전데이터 중재식별 위험도가높은 항목에대

한 정규화 기반 비식별화 기법을 제안하였다. 특히 무효전력은 부호 보존

방식으로 정규화하고, 전류는 항목별로 값의 범위를 조정함으로써 설비

용량 추정을 어렵게 하였다. 또한, 실험을 통해 비식별화 이후에도 예측

정확도가 일정 수준 유지됨을 확인하였다. 이로써 본 연구는 정규화 기반

비식별화 기법이정보보호와 데이터활용성 간의 균형을실현할 수 있는

실효성 있는 방안임을 실험적으로 확인하였으며, 이는 향후 태양광 발전

데이터를 포함한 다양한 에너지 데이터의 공공 활용 기반 마련에 기여할

수 있을 것이다.
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