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요 약

본 논문은 Kolmogorov-Arnold Networks(KAN)의 해석가능성을 활용해 Rayleigh·Nakagami-m 등 대표적 페이딩채널의 SNR
확률 분포를 근사하고, 학습이 완료된 모델로부터 KAN의 심볼릭 수식을 자동 추출하는기능을 통해 확률 분포에 대한 수식 근사
방법을제안한다. 우선 KAN이 B-spline 기반의함수 근사가가능한 점을활용하여 각페이딩 채널의확률분포함수를근사하였으
며, 이때 (i) 로그함수를 통해 확률 분포함수의 양수 보장, (ii) 적분값 정규화를 위한 페널티 항을 추가해 확률 분포의 제약조건을
만족시켰다. Rayleigh와 Nakagami-m 실험을 통해 KAN 자체의 확률분포함수에 대한 근사 능력은 확인하였으나, 네트워크 구조
와 symbolic 함수에 따라 심볼화 단계에서 오차 발생 가능성을 확인하였다.

Ⅰ. 서 론

이동통신시스템의 성능을 정확하게 예측·설계 하기 위해서는 채널의 확

률적인 특성을 정확하게 모델링해야 한다. 특히 다중경로 페이딩 환경에

서는 수신 신호 대 잡음비의 확률 밀도 함수에 대한 모델링이 중요하며,

실제 환경에서는 Rayleigh, Rician, Nakagami-m, two-wave with

diffused power (TWDP) [1] 등 다양한 페이딩 모델링을 하고있으며, 채

널 근사대한정확도를더높이기위해더복잡한모델들이계속해서연구

되고있다. 이를 통해, 해당 환경에서의통신 용량, 에너지효율, 물리계층

보안 등에 성능 지표를 해석적으로 분석할 수 있게 된다. 하지만, 단순히

복잡도만을 올려서 채널을 묘사하게 되면, 원래 모델링을 하는 목적인 시

스템의성능파악을하는데있어서어려움이생기게되고, 적절한 복잡도

와 모델링 오류율 사이 선택이 필요하게 된다.

최근 들어고전적인모델링이아닌 머신러닝 기반의채널 모델링 시도들

이 늘어나고 있고, 신경망을 통해 채널 분포에 대한 파라미터를 구하거나

[2], Generative Adversarial Network (GAN) 또는 Variational

autoencoder (VAE)등의 생성형 모델을 통해 모사한 특성을 가진 채널을

재생성[3] 해내는연구들이진행되고 있다. 하지만, 파라미터를구하기위

해서는 채널이 어떤 분포군에 들어가는지를 알아야 하고, 회귀모델이나

생성형모델기반의채널분포근사또는생성의경우실제분포의수식은

블랙박스 형태로 해석이 불가능 하다. 이러한 기존 머신러닝 모델, 즉,

multi-layer perceptron (MLP)의 단점을 보완하기 위해, 최근 제안된

Kolmogorov-Arnold Networks (KAN) [4] 모델이 소개되었다. KAN은

Kolmogorov-Arnold representation theorem을 활용해임의의 다변수 함

수를 1차원함수들의합성으로표현하고, 각 함수를 B-spline 형태로근사

할 수 있다. 또한, 학습이 완료되면 심볼릭한 수식을 자동으로 추출할 수

있어, 복잡한신경망모델임에도불구하고, 해석 가능성을보일수 있으며,

이를 통해 본 논문에서는 페이딩 채널의 수신 신호 대 잡음비 확률 밀도

함수를 근사하고자 한다.

Ⅱ. 본 론

KAN의 근간이되는 Kolmogorov-Arnold representation theorem은 임

의의 다변수 연속함수를 제한된 구간에서 유한한 연속 단변수 함수들의

composition 과 addition만으로 표현할 수 있음을 의미한다. 이를 기반으

로 하여 KAN에서는 각 단변수 함수들을 B-spline curve를 통해 표현하

며, 이를 학습할 수 있는 파라미터를 통해 각 B-spline 기저의 가중 합으

로 구성하고, 이때 spline의 차수 와 grid의 개수 에 따라 더해지는
basis의 개수가 정해진다. 마지막으로 여러 노드와 레이어를 쌓음을 통해

addition과 composition을 구현한다. 이를 통해 함수를 근사하게 되면, 이

론적으로 그리드 개수가 늘어남에 따라 근사 오차가 0에 가까워진다.

근사가 마무리되면, interpretability를 위해 희소화, 프루닝, 심볼화 단계

를 거치게 된다. 이때, 마지막 심볼화 단계는 우리가 구한 단변수 함수를

근사하는 단계로, 근사에서 구한 그리드별 함숫값들을 바탕으로 정해둔

몇 가지 심볼 함수들에 대해 선형적인 확장을 포함해서 iterative grid

search를 통해 근사를 해주게 되고, 바로 이 단계를 통해 우리가 구한의 근사 함수를 우리가 알고 있는 함수의 조합으로 표현할 수 있게
된다.

마지막으로 본논문에서는단순한연속함수가아닌 확률분포함수의 특

징들을 고려하기위해 두가지추가적인방법론을 적용했다. 먼저, 함숫값

이항상 양수인확률분포함수의특징을 고려하기위해 log 에대한
근사로 문제를 수정했다. 그다음, 확률 분포함수의 적분값이 1인 특징을

반영하기 위해, loss 함수에 exponential을 취해 적분한 값이 1에서 멀어

지는 값에 대한 페널티를 추가했다.

Ⅲ. 실험 결과

제안한 방법론에 대해 평가하기 위해 Nakagami-m 페이딩 채널을 통해

실험을 진행하였다. 특히, 인 경우 Rayleigh fading에 해당하며, 이
경우 확률 분포함수[2]는 다음과 같이 표현된다.



    exp 
실험에 앞서수식을통해 KAN의 symbolic representation을 추측해보면

인풋 에 대한 linear 함수와 exponential 함수의 composition, 즉, 하나의
히든레이어만 추가되면 충분함을 예상할 수 있고, 이를 기반으로 네트워

크를각각히든레이어를 노드 2개짜리하나를추가한네트워크인 [1, 2, 1]

과, 같은 레이어를 하나 더 이어붙인 [1, 2, 2, 1] 네트워크를 통해 실험하

였다.

그림 1. KAN 기반 Rayleigh fading 확률 밀도 함수 근사

그림 1에서 KAN symbolic이 의미하는 바는 근사 후 심볼화까지 적용했

다는 것이다. 두 경우 모두 심볼화 이전 근사 자체는 이하의 mean
square error (MSE)를 보였지만, 심볼화 과정 중에서 오차가 생겼으며,

KAN 구조에 따라 interpretability의 차이가 생김을확인할 수 있다. 여기

서 확률분포함수임에도 불구하고 Kullback-Leibler divergence가 아닌

MSE를 사용한이유는기존 KAN 논문의방법론을그대로이식하기위함

으로, 향후연구에서는 KLD에 대한적용도고려하고있다. 네트워크구조

중 [1, 2, 1]의 경우 위에서도 언급했듯이 실제심볼화이후 함수를확인한

결과 exponential 함수와 linear 함수의 곱으로 표현이 되었지만, [1, 2, 2,

1]의 경우, 본래 의도는 충분히 복잡한 네트워크를 쌓아 올리더라도 적절

한 희소화와 프루닝을 통해 네트워크를 줄여서해당 함수로 표현이 될것

이라 생각했는데, 희소화와 프루닝이 제대로 이루어지지 않아 억지로 함

수들을분해하고 근사하는과정에서심볼릭함수를 제대로선택하지못해

오차가 생기는 것을 확인했다.

그림 2에서는 Nakagami-m 페이딩 채널 중 인 경우에 대한실험
으로 [1 n, 1], [1 n, n, 1]과 같이 다양한 모델에서 실험해 본 결과 모두

symbolic 화 이전까지는 모두 근사가 성공하지만, 심볼화이후 굉장히 큰

오차가 발생하는 것을 확인하였다. 특히,  에서의 확률 밀도함수
[2]

    exp 
에 대해, KAN 논문에서   함수에 대해 근사한 경우

   임을 활용해서 표현한 것을 고려하여 인
풋으로 같은값을 넣어 [2, 3, 1] 형태의 네트워크를 구성함에 따라심볼화

근사 성능이 좋아지는 것을 확인하였다.

Ⅳ. 결 론

본 논문은 Kolmogorov-Arnold Networks를 이용해 페이딩 채널의 SNR

확률 밀도 함수를 해석적으로 근사하는 방법을 제안하고, Rayleigh 및

Nakagami-m 채널에 대해그 효과를 확인하였다. 로그변환과 적분정규

화 페널티를 통해 확률 분포함수의 기본 제약조건을 만족시켰으며, 심볼

화 단계에서 자동으로 추출된 단순 수식을 통해 모델 해석성을 확보하였

다. 실험결과, 얕은 KAN 구조는높은근사정확도와 뛰어난심볼화성능

을 동시에 달성한 반면, 과도한 깊이의 네트워크는 pruning 미흡으로 해

석과정에서 오차가증가할수 있음을확인하였다. 이는 KAN 적용 시네

트워크깊이와희소화전략이핵심설계변수가됨을시사한다. 향후연구

에서는 TWDP 등 더 복잡한 페이딩모델및 실제 측정 데이터로확장실

험, 온라인 학습을 통한 환경 적응형 PDF 근사, KAN 기반 채널 모델을

활용한 용량‧에너지 효율‧물리계층 보안 성능 분석 자동화 등을 통해 무

선 시스템 설계 전반에 걸친 활용 가능성을 더욱 넓힐 예정이다.
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그림 2. KAN 기반 Nakagami-m fading 확률 밀도 함수 근
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