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요 약

본 논문은 지하철 개집표기 환경에서 RSSI(Received Signal Strength Indicator) 데이터를 활용하여 승객의 위치를 실시간으로 예측하는
LSTM(Long Short–Term Memory)모델을 제안한다. 시뮬레이션 환경에서 8개의 BLE 비콘으로 부터수집된 RSSI 데이터를 바탕으로 사용자의진입
(IN)과 진출(OUT) 여부를 학습하였으며, LSTM 모델은 시간에 따른 신호 강도의 변화를반영하여 높은 정확도의 위치예측 성능을 달성하였다. 이를
통해 기존 태그리스(Tagless) 결제 시스템의 불안정성을 개선하고 복잡한 비콘 인식 절차를 간소화함으로써, 실제 교통 결제 시스템에서의 안정성과
이용 편의성을 동시에 향상할 수 있음을 실험적으로 검증하였다.

Ⅰ. 서 론

최근 전자 결제 시스템 분야에서는 QR코드, NFC, BLE등 다양한 비접

촉 결제 기술에 대한 연구가 활발히 진행되고 있다.[1] 현재 서울시 지하

철및 경기도광역버스에설치된태그리스(Tagless)결제 시스템은 사용자

가교통카드나 스마트폰을단말기에직접접촉하지 않고도자동으로결제

되는 편리함을 제공한다.[2] 태그리스 시스템은 BLE 비콘을 이용한 비접

촉 기술을활용해 차량 내부에설치된 다수의비콘을 모두 인식했을 때만

결제가 완료되도록 설계되어 있다. 그러나 실제 운행 환경에서는 승객의

스마트폰 위치, 탑승 자세, 차량 내부 혼잡도 등 다양한 요인으로 인해 비

콘 인식이 불안정하여결제 실패 사례가 빈번하게 발생하고있다.[3] 이로

인해승객들은요금결제의신뢰성저하와불편을겪고있으며, 시스템도

입 초기 기대했던 편의성이 크게 감소되어 이용률이 매우 저조한 상태이

다.

본 논문에서는 기존의 모든 비콘 인식 방식 대신, 스마트폰이 수신하는

RSSI(Received Signal Strength Indicator)신호 세기를 기반으로 승객이

개집표기를 진입했는지, 혹은 진출했는지를 LSTM(Long Short-Term

Memory) 기반의 딥러닝 모델이 자동으로 판단하는 새로운 시스템을 제

안한다.[4] 또한, 실제 지하철개집표기 시스템을 묘사한 환경을 구현하여

제안기법의적용가능성을검증하였다. 이를 통해복잡한비콘인식절차

를 간소화하고, 환경 변화에 강인한 위치 예측 방식을 구현하여 태그리스

결제 시스템의 안정성과 이용의 편의성을 동시에 향상하고자 한다.

Ⅱ. 환경 설정

본 연구는 실제 환경을 구현하여 RSSI 값을 측정하는데 제약이 있어,

한계를 극복하기 위해 Python을 활용하여 가상의 환경을 구현하고 데이

터를 생성한다. 그림 1.은 개집표기 시뮬레이션 환경을 나타내며, y= -2.5

를 기준으로 개집표기의 입·출구를 구성한다. y의 좌표가 –2.5보다 작은

경우개집표기 출구(OUT), y좌표가–2.5보다큰경우개집표기 입구(IN)

로명확히구분한다. x, y, z축에는총 8개의 BLE비콘을배치하고, 사용자

의 시작점은 시뮬레이션 상황에 따라 그림 1.과 같이 랜덤하게 배치한다.

그림 1. 개집표기 시뮬레이션 환경

시뮬레이션 환경은 개집표기 출구(OUT)에서 개집표기 출구(OUT)으

로 가는 경우, 개집표기 출구(OUT)에서 개집표기 입구(IN)으로 가는 경

우, 개집표기 입구(IN)에서 개집표기 입구(IN)으로 가는 경우, 개집표기

입구(IN)에서 개집표기 출구(OUT)으로 가는 경우로 총 4가지의 시뮬레

이션 환경을 구성한다. 사용자가 실제로 개집표기를 통과하는 평균적인

시간을 고려하여, 5초 동안 1초 단위로 RSSI 값을측정한다. 또한, 사람의

보폭 및 상체의 흔들림을 고려하여, x, y, z의 좌표 값 변화를 설정한다.

이 과정에서 5초 동안 BLE 비콘은 5개의 RSSI 값이 측정되고, 총 40개의

RSSI 값을 한 사용자로부터 측정할 수 있게 된다.

그림 2. OUT-IN 3차원 상황 그림 3. OUT–IN 2차원 상황

그림 2.와 그림 3.같은 경우 사용자가 개집표기 출구(OUT)에서 개집표

기 입구(IN)로 가는 상황을 각각 3차원, 2차원으로 나타낸 상황이다.



Ⅲ. 데이터 생성 및 함수 설정

본 시뮬레이션은 각 상황별로 2,500명씩 1초 단위로 총 8개의 RSSI 값

을 5초 동안 측정한 후, 총 400,000개의 RSSI 값을 생성하여 예측 모델을

설계한다. RSSI 데이터를 측정하기 위해 사용자의 스마트폰이 아무런 장

애물 없이 개집표기를 통과한다고 가정한다.     ················· (1)
환경감쇠계수() 참조신호세기()

값 2 -45~-40

표 1. 환경 감쇠 계수 및 참조신호세기 값

수식 (1)은 환경감쇠계수(), 거리() 및 참조신호세기( )에 따른

RSSI 값을 구하는 식이다. 표 1.과 같이 값은 2로 고정하였고, 값은
–45 ~ -40으로 설정하였고, 상황에 따라 값과 값은 유동적으로 바꿀
수 있다. 생성된 데이터는 시나리오에 따라 표 2.와 같이 각각 레이블이

부여된다.

IN-IN IN-OUT OUT-IN OUT-OUT
0 1 2 3

표 2. 시나리오 별 레이블

표 2.와같은레이블링은학습 모델이다양한이동경로를 구분할수있

도록 설계되었으며, 각 시나리오는 사용자의 위치의 초기값 및 이동 방식

에 따라 명확하게 구분된다.

Ⅳ. 예측 모델 설계 및 학습

그림 4. 예측 모델 구조 순서

본 연구에서 LSTM 모델은그림 4.처럼 8개의 BLE 비콘으로부터 측정

된 RSSI 신호를 시퀀스 길이(seq_len)가 5인 형태로 구성하여 입력 데이

터로 활용한다. 각 데이터는 StandardScaler를 통해 표준화된 후, 시퀀스

데이터 형태(batch, seq_len, num_tags)로 변환된다. 전체 데이터를 무작

위로 섞은후, 70%의학습, 나머지 30%를 검증ㆍ테스트용으로 분할하고,

이어 검증ㆍ테스트 비율을 2:1로 재분할하여 최종적으로 학습 70%, 검증

20%, 테스트 10%의 비율을설정한다. 이를 통해 사용자스마트폰이 수신

한 RSSI 값의 시계열적 특성을 학습할 수 있도록 하였다. 모델 구조는 3

개의 LSTM 레이어로 구성되어 있으며, 각 레이어는 256개의 hidden 유

닛과 0.2의 dropout 비율을 사용하여 과적합(overfitting)을 방지하였다.

모델의 최종출력은 Fully Connected 레이어를통해 4가지 시나리오를분

류하는 형태로 설계하였다. 학습 과정에서 손실 함수로는 다중 클래스 분

류에 적합한 CrossEntropyLoss를 채택하였다. Optimizer로는

Adam(learing rate = 0.001)을 사용하였다. 그 외주요하이퍼파라미터는

아래 표 3. 과 같다.

항목 값
학습/검증/테스트 분할 비율 7:2:1
배치크기(batch size) 64

Epoch 수 50

표 3. 주요 하이퍼 파라미터

Ⅴ. 실험 결과

LSTM 기반모델의학습및검증과정은총 50 Epoch 동안 진행되었으

며, 각 Epoch마다 검증 손실(Validation Loss)과 정확도(Accuracy)를 기

록하였다. 그림 5.를 보면 검증 손실은 1 Epoch에서 0.759로 시작해 감소

하여 수렴해나가는 추세를 보였다. 16 Epoch 이후부터는 약 0.18 부근에

수렴하며 안정화되었다. 그림 6.을 보면 1 Epoch에서 이미 88.2%의 높은

정확도를 달성하였으며, LSTM 모델이 4가지 RSSI 시나리오 간 시계열

패턴을 빠르게 학습했음을 의미한다. 16 Epoch 이후로 92.22%로 수렴하

는 것이 관측되었으며, 고밀도 상황에서도 일관된 분류 능력을 입증하였

다.

그림 5. Epoch에 따른 Loss 그림 6. Epoch에 따른 정확도

Ⅵ. 결론

본 연구에서는 LSTM 기반 Tagless BLE RSSI 분석을 통한 게이트

내·외 스마트폰 위치 예측 시스템을 제안한다. 실험을 통해 지하철 및 버

스의 태그리스 결제 시스템에서 사용되는 다수의 비콘 인식 방식을 대체

할 수있는 유효성을실험적으로 검증하였다. 또한, LSTM 기반 RSSI 위

치추정 모델은고성능·고속수렴과안정적분류성능을동시에만족하며,

기존 모든 비콘 인식 방식 대비 결제 실패율을 크게 줄일 수 있는 대안임

을 확인하였다. 향후 실제 차량 환경에서의 테스트를 통해 모델 파라미터

를 최적화하고, 결제 시스템 통합 단계별 효과를 정량적으로 평가할 예정

이다.
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