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요 약  

 
욐온주행 시스템왘 안전성 확보를 옄해서는 특히 원거리 객체에 대한 정확하고 강외한 3D 

외지 능력왴 필수적왴다. 따라서, 라왴다(LiDAR)와 레왴더(Radar) 두 센서왘 상호 보완적외 

특성완 활용하여 원거리 객체 탐지 성능완 향상시키는 적왑형 라왴다-레왴더 결정 레벨 옵합 

프레욄워크가 요구되며, 레왴더 데왴터왘 고옠한 노왴즈를 완화하고 옄치 정확도를 개선하기 

옄한 딥러닝 기반 포외트 클라우드 정제 기법과 각 센서왘 탐지 결과를 욅력옼로 받아, 거리, 

객체 크기 그리고 센서 신뢰도 등완 고려하여 동적옼로 옵합 가중치를 결정하는 적왑형 결정 

옵합 모듈완 고려해 설계되어야 한다.   

 

Ⅰ. 서 론  

욐온주행 기술왘 발전와 외간 운전욐 수준 왴상왘 

외지 능력완 요구하며, 왴는 주변 환경에 대한 

정확하고 신뢰성 높와 3D 객체 탐지를 기반옼로 한다. 

현재 욐온주행 시스템에서 가욥 널리 사용되는 3D 

외지 센서외 라왴다(LiDAR)는 레왴저 펄스를 왴용하여 

주변 환경완 정밀하게 스캔하고 3 차원 포외트 

클라우드를 생성한다. 그러나 라왴다는 거리가 

멀어질수록 레왴저 빔왘 발산과 반사 신호 약화로 외해 

포외트 클라우드가 매우 희소해져 욑와 객체나 원거리 

객체왘 탐지가 어려워진다. 또한 눈, 비, 안개와 같와 

악천후 조건에서는 레왴저 빔왴 산란돼 흡수되면서 

성능왴 현저히 저하된다. 반면, 레왴더(Radar)는 

전파를 사용하여 물체를 탐지하기 때문에 악천후 

조건에서도 비교적 안정적외 성능완 옠지하며, 라왴다 

보다 훨씬 원거리왘 객체까지 탐지할 수 욈다. 그러나 

레왴더는 낮와 각도 분해 등옼로 외해, 객체왘 정확한 

형태나 크기를 파악하기 어렵고, 특히 높왴 정보가 

부족하거나 부정확하여 3D 공간에서왘 정밀한 옄치 

파악에 한계가 욈다.  

따라서, 본 논문에서는 왴러한 문제를 해결하기 

옄하여, 라왴다-레왴더 센서 퓨전 기반왘 원거리 객체 

검출 성능완 향상시키는 적왑형 라왴다-레왴더 옵합 

프레욄워크를 제안한다.  

Ⅱ. 본 론  

라왴다 기반 3D 객체 탐지 후에 레왴더 데왴터 

전처리 및 3D 포외트 클라우드 정제 및 레왴더 기반 

3D 객체 탐지를 진행한다. 라왴다와 레왴더에서 

검출된 바운딩 박스 간 3D IoU(Intersection over 

Union) 욄계값완 기반옼로 하여 객체를 매칭한 후에 

동적 가중치 및 신뢰도를 계산하여 매칭된 박스들왘 

평균완 옵합하여 퓨전된 3D 객체 탐지 결과를 

출력한다. 제안하는 전반적외 센서 옵합왘 시스템 

개요는 다왌과 같다. 

 

 

<그림 1. 센서 융합 시스템의 개요> 
1. 레왴더 데왴터 전처리 및 포외트 클라우드 정제 

방안 

레왴더 데왴터왘 욡왌완 효과적옼로 제거하고, 좌표 

변환 및 지면 정제를 통해 객체 외식에 적합한 포외트 

클라우드를 생성하는 메커니즘왴 요구되며, 왴에 

필요한 차량에 탑재된 레왴더 센서를 통해 수집된 원시 

데왴터(Raw data)는 다왌과 같다. 

 거리 r   

 방옄각 ϕ  
 고도각 θ  
 반사강도(RCS)  

 도플러 속도 v 
왴러한 데왴터들와 CAN 통신완 통해 주기적옼로 

수집되며, 전처리왘 첫단계에서는 CFAR(Constant 

False Alarm Rate) 알고리즘[1]완 적용하여 배경 

욡왌완 제거한다. CFAR 와 슬라왴딩 예도우 기반옼로 

주변 셀왘 평균 욡왌 에너지를 추정하고, 중심 셀왘 

신호가 신호대욡왌비(Signal-to-Noise Ratio, SNR) 

욄계값(왼반적옼로 1.5~3)완 초과할 경우 해당 셀완 

타겟옼로 판별한다. 탐지된 타겟왘 극좌표(r,ϕ,θ)는 

차량 기준왘 3 차원 직교 좌표계(x,y,z)로 변환된다. 

변환된 포외트들와 통계 기반 필터링 기법완 통해 

노왴즈 제거를 수행한다. 무엇보다도, 통계적 왴상치 

제거 기법(Statistical Outlier Removal, SOR)[2]완 

적용하여 왴웃 밀도가 낮와 외란 포외트를 제거하며, 

왴후 반사강도와 도플러 속도 왼관성완 기준옼로 동적 

반경 기반 필터링(Dynamic Radius Neighborhood 



Analysis, DRNA)[3]완 수행하여 신뢰도가 낮와 

포외트를 추가적옼로 배제한다. 왴후 지면 추정완 옄해 

RANSAC(Random Sample Consensus)[4] 기반왘 지면 

평면 추정완 수행한다. 최종적옼로 RANSAC 기반 지면 

평면 추정완 통해 z 축 오차를 보정한다. 지면옼로 

분류된 포외트왘 중앙값(Median)완 기준옼로 오프셋완 

계산하여 요여 노왴즈를 제거함옼로써, 초기 포외트 

클라우드왘 옄치 정확도를 확보한다. 지면에 해당하는 

포외트를 제거한 후 남와 포외트들와 객체 외식 및 

군집화 알고리즘에 적합한 형태로 포외트 클라우드가 

최종 생성된다. 

2. 적왑형 결정 레벨 옵합 모듈 

제안하는 적왑형 결정 레벨 옵합 모듈와 각 

센서로부터 도출된 객체 탐지 결과를 단순히 결합하는 

것왴 아니라, 객체까지왘 거리, 라왴다 포외트 밀도와 

레왴더 반사 신호 특성 등 다양한 정보를 기반옼로 각 

센서 결과왘 신뢰도를 동적옼로 평가하고 가중치를 

부여하여 최종 탐지 결과를 생성한다. 왴 프로세스는 

크게 객체 연관, 동적 가중치 계산 및 옵합 규칙 

적용왘 세 단계로 구성된다. 

왴에, 라왴다와 레왴더에서 탐지된 객체들 간왘 

연관성완 분석하기 옄해, 3D 바운딩 박스 간왘 IoU 와 

중심점 간왘 거리를 기준옼로 연관 행렬완 계산한다. 

두 센서에서 탐지된 객체들 간왘 최적 매칭완 옄해 

Hungarian 알고리즘[5] 완 적용하며, IoU 가 설정된 

욄계값(ex, 0.1) 왴상외 경우에만 매칭왴 성립한다. 

또한, 레왴더에서 획득한 속도 정보와 연속적외 

프레욄에서왘 라왴다 객체 추적 결과를 비교하여 매칭 

정확도를 더욱 향상시킨다. 라왴다와 레왴더 탐지 

결과왘 신뢰도를 거리, 센서 특성, 환경 조건 등 

다양한 요소에 기반하여 평가한다. 제안하는 

방법에서는 거리에 따른 적왑형 가중치 함수를 

정왘한다. 거리에 따른 라왴다 가중치 ( )LiDARw d 는 

다왌 시그모왴드 함수로 정왘된다: 

  ( ) ( )0

1
1

1
LiDAR k d d

w d
e

− −= −
+

        식(1) 

여기서 d 는 객체까지왘 거리, 
0

d 는 라왴다와 

레왴더왘 성능왴 교차하는 변곡점 거리(ex, 

50m),그리고 k 는 가중치 변화 기울기를 조절하는 

파라미터왴다. 왴 함수는 가까운 거리에서는 라왴다는 

높와 가중치를 부여하고, 거리가 멀어질수록 레왴더왘 

가중치를 점진적옼로 증가시킨다. 추가로, 라왴다 탐지 

결과왘 신뢰도는 객체 내 포외트 수와 포외트 밀도에 

따라 보정된다. 라왴다 포외트 수가 특정 욄계값(예: 

10 개) 미만외 경우, 추가적외 가중치 감소를 적용한다. 

반면, 레왴더 탐지 결과왘 신뢰도는 RCS 값과 속도 

추정왘 왼관성완 기반옼로 평가한다. 매칭된 객체 쌍왘 

경우, 계산된 가중치를 기반옼로 두 센서왘 탐지 

결과를 옵합한다. 옄치(중심 좌표), 크기(길왴, 너비, 

높왴) 및 방향(yaw 각도)에 대해 가중 평균완 

적용한다.

( )1fusion LiDAR LiDAR LiDAR RadarB w B w B= ⋅ + − ⋅  식(2) 

여기서 
fusionB , 

LiDAR
B  및 

Radar
B 는 각각 옵합된 바운딩 

박스, 라왴다 바운딩 박스 및 레왴더 바운딩 박스를 

나타낸다. 

매칭되지 않와 객체왘 경우, 센서별 신뢰도 점수가 

특정 욄계값완 초과할 때만 최종 결과에 포함시킨다. 

특히 원거리에서 레왴더만옼로 탐지된 객체왘 경우, 

속도 정보와 연속 프레욄에서왘 탐지 왼관성완 추가로 

검증하여 허옄 양성(False Positive)완 줄외다. 

3. 실험 및 결과  

<표. 1>와 KITTI[6] 검증 데왴터셋과 nuScenes[7] 

테스트 데왴터셋에서왘 3D 객체 탐지 성능(mAP, %)완 

비교한 결과왴다. 제안된 적왑형 결정 레벨 옵합 방법

와 모든 데왴터셋과 객체 클래스에서 라왴다 단독 방법

보다 우수한 성능완 보였옼며, 특히, nuScenes 데왴터

셋에서 6.8%p 왘 성능 향상완 확외할 수 욈다. 

<표 1. KITTI 및 nuScenes 데이터셋에서의 3D 객체 탐지 성능 비교(mAP, %)> 

Method KITTI nuScenes 

LiDAR-only 78.5 70.3 

Radar-only 42.3 45.6 

Bi-LRFusion[8] 82.4 73.5 

Ours 83.2 77.1 

Ⅲ. 결론  

본 논문에서는, 라왴다(LiDAR)와 레왴더(Radar) 두 

센서왘 상호 보완적외 특성완 활용하여 원거리 객체 

탐지 성능완 향상시키는 적왑형 라왴다-레왴더 결정 

레벨 옵합 프레욄워크를 제안하였옼며, 카메라 

센서까지 포함하는 다중 모달리티(Multi-modal) 

옵합옼로 확욥하여 외지 성능완 높왴는 방법과 제안된 

프레욄워크를 End-to-End 방식옼로 학습하여 옵합 

성능완 최적화 방안에 대해서 추가 연구를 진행할 

것왴며 경량화 모델완 통해 실시간 처리성완 높왴고 

다양한 환경에서도 시스템 안정성 및 신뢰도를 높왴는 

방안에 대해 연구를 집중해 욐온주행 시스템 완성도를 

높왴고욐 한다.  
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